
An extended supporting hyperplane
algorithm for convex MINLP problems

Andreas Lundell, Jan Kronqvist and Tapio Westerlund

Center of Excellence in

Optimization and Systems Engineering

Åbo Akademi University, Finland

XII Global Optimization Workshop
Universidad de Malaga, Spain
September 2, 2014



2 | 31

Contents of the talk

I The extended cutting plane (ECP) algorithm is briefly
introduced.

I A new interior point based algorithm for solving convex
MINLP problems to global optimality is introduced.

. Cutting planes are replaced with supporting hyperplanes
using a line search procedure.

. Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.

. An interior point is required for the line search.



2 | 31

Contents of the talk

I The extended cutting plane (ECP) algorithm is briefly
introduced.

I A new interior point based algorithm for solving convex
MINLP problems to global optimality is introduced.

. Cutting planes are replaced with supporting hyperplanes
using a line search procedure.

. Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.

. An interior point is required for the line search.



The ECP algorithm



The ECP algorithm 4 | 31

The extended cutting plane algorithm

I The ECP algorithm is a solver for generally convex
mixed-integer nonlinear programming (MINLP) problems.

I Solves MILP relaxations of the MINLP problem where the
nonlinear constraints are approximated using cutting
planes.

I Implemented, e.g., in the AlphaECP solver in GAMS and
available on the NEOS server.



The ECP algorithm 4 | 31

The extended cutting plane algorithm

I The ECP algorithm is a solver for generally convex
mixed-integer nonlinear programming (MINLP) problems.

I Solves MILP relaxations of the MINLP problem where the
nonlinear constraints are approximated using cutting
planes.

I Implemented, e.g., in the AlphaECP solver in GAMS and
available on the NEOS server.



The ECP algorithm 4 | 31

The extended cutting plane algorithm

I The ECP algorithm is a solver for generally convex
mixed-integer nonlinear programming (MINLP) problems.

I Solves MILP relaxations of the MINLP problem where the
nonlinear constraints are approximated using cutting
planes.

I Implemented, e.g., in the AlphaECP solver in GAMS and
available on the NEOS server.



The ECP algorithm 5 | 31

Roots

Convex NLP problems Kelley Jr. J., The cutting-plane method
for solving convex programs, Journal of the SIAM, vol. 8(4),
pp. 703–712, 1960.

Convex MINLP problems Westerlund T. and Pettersson F., An
extended cutting plane method for solving convex MINLP
problems, Computers & Chemical Engineering 19, pp.
131–136, 1995.



The ECP algorithm 5 | 31

Roots

Convex NLP problems Kelley Jr. J., The cutting-plane method
for solving convex programs, Journal of the SIAM, vol. 8(4),
pp. 703–712, 1960.

Convex MINLP problems Westerlund T. and Pettersson F., An
extended cutting plane method for solving convex MINLP
problems, Computers & Chemical Engineering 19, pp.
131–136, 1995.



The ECP algorithm 6 | 31

Extensions

Pseudoconvex constraints Westerlund T., Skrifvars H.,
Harjunkoski I. and Porn R. An extended cutting plane method
for solving a class of non-convex MINLP problems.
Computers and Chemical Engineering, 22, 357–365, 1998.

Pseudoconvex objective function and constraints Pörn R. and
Westerlund T. A cutting plane method for minimizing
pseudo-convex functions in the mixed-integer case.
Computers and Chemical Engineering, 24, 2655–2665, 2000.

Nonsmooth constraints Eronen V.-P., Mäkelä M. M. and
Westerlund T. Extended cutting plane method for a class of
nonsmooth nonconvex MINLP problems, Optimization,
available online, Taylor and Francis, 2013.



The ECP algorithm 6 | 31

Extensions

Pseudoconvex constraints Westerlund T., Skrifvars H.,
Harjunkoski I. and Porn R. An extended cutting plane method
for solving a class of non-convex MINLP problems.
Computers and Chemical Engineering, 22, 357–365, 1998.

Pseudoconvex objective function and constraints Pörn R. and
Westerlund T. A cutting plane method for minimizing
pseudo-convex functions in the mixed-integer case.
Computers and Chemical Engineering, 24, 2655–2665, 2000.

Nonsmooth constraints Eronen V.-P., Mäkelä M. M. and
Westerlund T. Extended cutting plane method for a class of
nonsmooth nonconvex MINLP problems, Optimization,
available online, Taylor and Francis, 2013.



The ECP algorithm 6 | 31

Extensions

Pseudoconvex constraints Westerlund T., Skrifvars H.,
Harjunkoski I. and Porn R. An extended cutting plane method
for solving a class of non-convex MINLP problems.
Computers and Chemical Engineering, 22, 357–365, 1998.

Pseudoconvex objective function and constraints Pörn R. and
Westerlund T. A cutting plane method for minimizing
pseudo-convex functions in the mixed-integer case.
Computers and Chemical Engineering, 24, 2655–2665, 2000.

Nonsmooth constraints Eronen V.-P., Mäkelä M. M. and
Westerlund T. Extended cutting plane method for a class of
nonsmooth nonconvex MINLP problems, Optimization,
available online, Taylor and Francis, 2013.



The ECP algorithm 7 | 31

An example

minimize cT x = −x1 − x2

subject to g1(x1,x2) = 0.15(x1 −8)2 +0.1(x2 −6)2 +0.025ex1x−2
2 −5 ≤ 0

g2(x1,x2) = 1/x1 +1/x2− x0.5
1 x0.5

2 +4 ≤ 0

2x1 −3x2 −2 ≤ 0

1 ≤ x1 ≤ 20, 1 ≤ x2 ≤ 20, x1 ∈�, x2 ∈�.

5 10 15 20

5

10

15

20

x1

x2

5 10 15 20

5

10

15

20

x1

x2



The ECP algorithm 7 | 31

An example

minimize cT x = −x1 − x2

subject to g1(x1,x2) = 0.15(x1 −8)2 +0.1(x2 −6)2 +0.025ex1x−2
2 −5 ≤ 0

g2(x1,x2) = 1/x1 +1/x2− x0.5
1 x0.5

2 +4 ≤ 0

2x1 −3x2 −2 ≤ 0

1 ≤ x1 ≤ 20, 1 ≤ x2 ≤ 20, x1 ∈�, x2 ∈�.

5 10 15 20

5

10

15

20

x1

x2

5 10 15 20

5

10

15

20

x1

x2



The ECP algorithm 7 | 31

An example

minimize cT x = −x1 − x2

subject to g1(x1,x2) = 0.15(x1 −8)2 +0.1(x2 −6)2 +0.025ex1x−2
2 −5 ≤ 0

g2(x1,x2) = 1/x1 +1/x2− x0.5
1 x0.5

2 +4 ≤ 0

2x1 −3x2 −2 ≤ 0

1 ≤ x1 ≤ 20, 1 ≤ x2 ≤ 20, x1 ∈�, x2 ∈�.

5 10 15 20

5

10

15

20

x1

x2

5 10 15 20

5

10

15

20

x1

x2



The ECP algorithm 7 | 31

An example

minimize cT x = −x1 − x2

subject to g1(x1,x2) = 0.15(x1 −8)2 +0.1(x2 −6)2 +0.025ex1x−2
2 −5 ≤ 0

g2(x1,x2) = 1/x1 +1/x2− x0.5
1 x0.5

2 +4 ≤ 0

2x1 −3x2 −2 ≤ 0

1 ≤ x1 ≤ 20, 1 ≤ x2 ≤ 20, x1 ∈�, x2 ∈�.

5 10 15 20

5

10

15

20

x1

x2

5 10 15 20

5

10

15

20

x1

x2



The ECP algorithm 8 | 31

I In each iteration k of the algorithm a MILP
problem is solved to obtain the solution point
(xk1 ,x

k
2 ).

I A new cutting plane is generated for the
nonlinear constraint gi with the largest error:

gi (x
k
1 ,x

k
2 )+∇gi (x

k
1 ,x

k
2 )

T (x − xk1 ,x − x
k
2 ) ≤ 0

I If this point is feasible also for the MINLP
problem, i.e.,

gi (x
k
1 ,x

k
2 ) ≤ × ∀i = 1,2,

the optimal solution has been found found.



The ECP algorithm 8 | 31

I In each iteration k of the algorithm a MILP
problem is solved to obtain the solution point
(xk1 ,x

k
2 ).

I A new cutting plane is generated for the
nonlinear constraint gi with the largest error:

gi (x
k
1 ,x

k
2 )+∇gi (x

k
1 ,x

k
2 )

T (x − xk1 ,x − x
k
2 ) ≤ 0

I If this point is feasible also for the MINLP
problem, i.e.,

gi (x
k
1 ,x

k
2 ) ≤ × ∀i = 1,2,

the optimal solution has been found found.



The ECP algorithm 8 | 31

I In each iteration k of the algorithm a MILP
problem is solved to obtain the solution point
(xk1 ,x

k
2 ).

I A new cutting plane is generated for the
nonlinear constraint gi with the largest error:

gi (x
k
1 ,x

k
2 )+∇gi (x

k
1 ,x

k
2 )

T (x − xk1 ,x − x
k
2 ) ≤ 0

I If this point is feasible also for the MINLP
problem, i.e.,

gi (x
k
1 ,x

k
2 ) ≤ × ∀i = 1,2,

the optimal solution has been found found.



The ECP algorithm 9 | 31

I To solve the problem with the ECP algorithm (×= 0.001) it takes
17 iterations (17 MILP problems solved to optimality).

I How can we improve performance?
Generate cutting planes on the boundary of the feasible set!



The ECP algorithm 9 | 31

I To solve the problem with the ECP algorithm (×= 0.001) it takes
17 iterations (17 MILP problems solved to optimality).

I How can we improve performance?

Generate cutting planes on the boundary of the feasible set!



The ECP algorithm 9 | 31

I To solve the problem with the ECP algorithm (×= 0.001) it takes
17 iterations (17 MILP problems solved to optimality).

I How can we improve performance?
Generate cutting planes on the boundary of the feasible set!



The ESH algorithm



The ESH algorithm 11 | 31

I A new interior point based algorithm for solving convex
MINLP problems to global optimality is introduced.

I Roots:
. Kelley’s cutting plane algorithm 1960
. The extended cutting plane algorithm 1995
. The supporting hyperplane method 1967
. The extended cutting plane algorithm 1995

I Cutting planes are replaced with supporting hyperplanes
using a line search procedure to find the generation point.
An interior point is required for the line search.

I Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.



The ESH algorithm 11 | 31

I A new interior point based algorithm for solving convex
MINLP problems to global optimality is introduced.

I Roots:
. Kelley’s cutting plane algorithm 1960
. The extended cutting plane algorithm 1995
. The supporting hyperplane method 1967 1

. The extended cutting plane algorithm 1995

I Cutting planes are replaced with supporting hyperplanes
using a line search procedure to find the generation point.
An interior point is required for the line search.

I Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.

1The supporting hyperplane method for unimodal programming, Veinott Jr. A. F., Operations Research, Vol.
15(1), pp. 147–152, 1967.



The ESH algorithm 11 | 31

I A new interior point based algorithm for solving convex
MINLP problems to global optimality is introduced.

I Roots:
. Kelley’s cutting plane algorithm 1960
. The extended cutting plane algorithm 1995
. The supporting hyperplane method 1967 1

. The extended cutting plane algorithm 1995

I Cutting planes are replaced with supporting hyperplanes
using a line search procedure to find the generation point.
An interior point is required for the line search.

I Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.

1The supporting hyperplane method for unimodal programming, Veinott Jr. A. F., Operations Research, Vol.
15(1), pp. 147–152, 1967.



The ESH algorithm 11 | 31

I A new interior point based algorithm for solving convex
MINLP problems to global optimality is introduced.

I Roots:
. Kelley’s cutting plane algorithm 1960
. The extended cutting plane algorithm 1995
. The supporting hyperplane method 1967 1

. The extended cutting plane algorithm 1995

I Cutting planes are replaced with supporting hyperplanes
using a line search procedure to find the generation point.
An interior point is required for the line search.

I Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.

1The supporting hyperplane method for unimodal programming, Veinott Jr. A. F., Operations Research, Vol.
15(1), pp. 147–152, 1967.



The ESH algorithm 12 | 31

The MINLP problem

I The algorithm finds the optimal solution x∗ to the following
convex MINLP problem:

x∗ = argmin
x∈C∩L∩Y

cTx (P)

where x = [x1,x2, . . . ,xN ]T belongs to the compact set

X =
{
x
∣∣∣x i ≤ xi ≤ x i , i = 1, . . . ,N

}
⊂�

n ,

the feasible region is defined by C ∩ L ∩Y ,

C = {x |gm(x) ≤ 0, m = 1, . . . ,M , x ∈ X } ,
L = {x |Ax ≤ a , Bx = b , x ∈ X } ,
Y = {x |xi ∈�, i ∈ I�, x ∈ X } ,

and C is a convex set.



The ESH algorithm 13 | 31

Steps in the EHS algorithm

NLP: Obtain a feasible, relaxed interior point (satisfying C ) by
solving a NLP problem.

LP1: Solve simple LP problems (initially in X ) to add additional
supporting hyperplanes. Optional.

LP2: Solve simple LP problems (including the constraints in L )
to add additional supporting hyperplanes. Optional.

MILP: Solve MILP problems to find the optimal solution to (P).



The ESH algorithm 13 | 31

Steps in the EHS algorithm

NLP: Obtain a feasible, relaxed interior point (satisfying C ) by
solving a NLP problem.

LP1: Solve simple LP problems (initially in X ) to add additional
supporting hyperplanes. Optional.

LP2: Solve simple LP problems (including the constraints in L )
to add additional supporting hyperplanes. Optional.

MILP: Solve MILP problems to find the optimal solution to (P).



The ESH algorithm 13 | 31

Steps in the EHS algorithm

NLP: Obtain a feasible, relaxed interior point (satisfying C ) by
solving a NLP problem.

LP1: Solve simple LP problems (initially in X ) to add additional
supporting hyperplanes. Optional.

LP2: Solve simple LP problems (including the constraints in L )
to add additional supporting hyperplanes. Optional.

MILP: Solve MILP problems to find the optimal solution to (P).



The ESH algorithm 13 | 31

Steps in the EHS algorithm

NLP: Obtain a feasible, relaxed interior point (satisfying C ) by
solving a NLP problem.

LP1: Solve simple LP problems (initially in X ) to add additional
supporting hyperplanes. Optional.

LP2: Solve simple LP problems (including the constraints in L )
to add additional supporting hyperplanes. Optional.

MILP: Solve MILP problems to find the optimal solution to (P).



The ESH algorithm 14 | 31

NLP step

I If an interior point is not given, obtain a feasible, relaxed
interior point (satisfying all the nonlinear constraints in C )
by solving a NLP problem.

5 10 15 20

5

10

15

20



The ESH algorithm 15 | 31

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 15 | 31

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 15 | 31

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 15 | 31

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 15 | 31

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 15 | 31

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 15 | 31

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 15 | 31

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 15 | 31

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 16 | 31

LP2 step (optional)

I Continue with a corresponding procedure as in LP1 but
now also including the linear constraints in L in the
original problem.

5 10 15 20

5

10

15

20



The ESH algorithm 16 | 31

LP2 step (optional)

I Continue with a corresponding procedure as in LP1 but
now also including the linear constraints in L in the
original problem.

5 10 15 20

5

10

15

20



The ESH algorithm 16 | 31

LP2 step (optional)

I Continue with a corresponding procedure as in LP1 but
now also including the linear constraints in L in the
original problem.

5 10 15 20

5

10

15

20



The ESH algorithm 17 | 31

MILP step

I Finally include the integer requirements and solve MILP
problems using a corresponding procedure to find the
optimal solution to (P).

5 10 15 20

5

10

15

20



The ESH algorithm 17 | 31

MILP step

I Finally include the integer requirements and solve MILP
problems using a corresponding procedure to find the
optimal solution to (P).

5 10 15 20

5

10

15

20



The ESH algorithm 17 | 31

MILP step

I Finally include the integer requirements and solve MILP
problems using a corresponding procedure to find the
optimal solution to (P).

5 10 15 20

5

10

15

20



The ESH algorithm 17 | 31

MILP step

I Finally include the integer requirements and solve MILP
problems using a corresponding procedure to find the
optimal solution to (P).

5 10 15 20

5

10

15

20



The ESH algorithm 18 | 31

NLP step

I A point in C is required as an endpoint for the line searches to
be conducted in the LP1-, LP2- and MILP-steps.

I Assuming that (P) has a solution, the internal point can be
obtained from the following NLP problem:

x̃NLP = argmin
x∈X

F(x), (P-NLP)

where F(x) := max
m=1,...,M

{gm(x)}.

I F is convex/quasiconvex since it is the maximum of
convex/quasiconvex functions.

I (P-NLP) may be nonsmooth (if M > 1) even if gm is smooth.

I The point x̃NLP need not be optimal but then fulfill F(x̃NLP) < 0.

I Can be solved, e.g., with the accelerated gradient method in.



The ESH algorithm 18 | 31

NLP step

I A point in C is required as an endpoint for the line searches to
be conducted in the LP1-, LP2- and MILP-steps.

I Assuming that (P) has a solution, the internal point can be
obtained from the following NLP problem:

x̃NLP = argmin
x∈X

F(x), (P-NLP)

where F(x) := max
m=1,...,M

{gm(x)}.

I F is convex/quasiconvex since it is the maximum of
convex/quasiconvex functions.

I (P-NLP) may be nonsmooth (if M > 1) even if gm is smooth.

I The point x̃NLP need not be optimal but then fulfill F(x̃NLP) < 0.

I Can be solved, e.g., with the accelerated gradient method in.



The ESH algorithm 18 | 31

NLP step

I A point in C is required as an endpoint for the line searches to
be conducted in the LP1-, LP2- and MILP-steps.

I Assuming that (P) has a solution, the internal point can be
obtained from the following NLP problem:

x̃NLP = argmin
x∈X

F(x), (P-NLP)

where F(x) := max
m=1,...,M

{gm(x)}.

I F is convex/quasiconvex since it is the maximum of
convex/quasiconvex functions.

I (P-NLP) may be nonsmooth (if M > 1) even if gm is smooth.

I The point x̃NLP need not be optimal but then fulfill F(x̃NLP) < 0.

I Can be solved, e.g., with the accelerated gradient method in.



The ESH algorithm 18 | 31

NLP step

I A point in C is required as an endpoint for the line searches to
be conducted in the LP1-, LP2- and MILP-steps.

I Assuming that (P) has a solution, the internal point can be
obtained from the following NLP problem:

x̃NLP = argmin
x∈X

F(x), (P-NLP)

where F(x) := max
m=1,...,M

{gm(x)}.

I F is convex/quasiconvex since it is the maximum of
convex/quasiconvex functions.

I (P-NLP) may be nonsmooth (if M > 1) even if gm is smooth.

I The point x̃NLP need not be optimal but then fulfill F(x̃NLP) < 0.

I Can be solved, e.g., with the accelerated gradient method in.



The ESH algorithm 18 | 31

NLP step

I A point in C is required as an endpoint for the line searches to
be conducted in the LP1-, LP2- and MILP-steps.

I Assuming that (P) has a solution, the internal point can be
obtained from the following NLP problem:

x̃NLP = argmin
x∈X

F(x), (P-NLP)

where F(x) := max
m=1,...,M

{gm(x)}.

I F is convex/quasiconvex since it is the maximum of
convex/quasiconvex functions.

I (P-NLP) may be nonsmooth (if M > 1) even if gm is smooth.

I The point x̃NLP need not be optimal but then fulfill F(x̃NLP) < 0.

I Can be solved, e.g., with the accelerated gradient method in.



The ESH algorithm 18 | 31

NLP step

I A point in C is required as an endpoint for the line searches to
be conducted in the LP1-, LP2- and MILP-steps.

I Assuming that (P) has a solution, the internal point can be
obtained from the following NLP problem:

x̃NLP = argmin
x∈X

F(x), (P-NLP)

where F(x) := max
m=1,...,M

{gm(x)}.

I F is convex/quasiconvex since it is the maximum of
convex/quasiconvex functions.

I (P-NLP) may be nonsmooth (if M > 1) even if gm is smooth.

I The point x̃NLP need not be optimal but then fulfill F(x̃NLP) < 0.

I Can be solved, e.g., with the accelerated gradient method in2.

2Nestorov, Y., Introductory lectures on convex optimization: A basic course, Kluwer Academic Publishers, 2004.



The ESH algorithm 19 | 31

LP1 step

I Starting from k = 1, Ò0 = X , the problem

x̃kLP = argmin
Òk−1

cTx (P-LP1)

is repeatedly solved, and supporting hyperplanes (SHs)

lk := F(xk )+ àF (x
k )T (x − xk ) ≤ 0

are generated and added to Òk .

The point xk is obtained
by a line search for F(xk ) = 0 between the internal point
x̃NLP and the solution point to (P-LP1) x̃kLP:

xk = Ýx̃NLP +(1−Ý)x̃kLP, Ý ∈ [0,1].

àF (xk )T is a gradient or subgradient of F at xk .
I If not F(x̃kLP) < ×LP1 or a maximum number of SHs have

been generated, then k is increased and (P-LP1) resolved.



The ESH algorithm 19 | 31

LP1 step

I Starting from k = 1, Ò0 = X , the problem

x̃kLP = argmin
Òk−1

cTx (P-LP1)

is repeatedly solved, and supporting hyperplanes (SHs)

lk := F(xk )+ àF (x
k )T (x − xk ) ≤ 0

are generated and added to Òk . The point xk is obtained
by a line search for F(xk ) = 0 between the internal point
x̃NLP and the solution point to (P-LP1) x̃kLP:

xk = Ýx̃NLP +(1−Ý)x̃kLP, Ý ∈ [0,1].

àF (xk )T is a gradient or subgradient of F at xk .

I If not F(x̃kLP) < ×LP1 or a maximum number of SHs have
been generated, then k is increased and (P-LP1) resolved.



The ESH algorithm 19 | 31

LP1 step

I Starting from k = 1, Ò0 = X , the problem

x̃kLP = argmin
Òk−1

cTx (P-LP1)

is repeatedly solved, and supporting hyperplanes (SHs)

lk := F(xk )+ àF (x
k )T (x − xk ) ≤ 0

are generated and added to Òk . The point xk is obtained
by a line search for F(xk ) = 0 between the internal point
x̃NLP and the solution point to (P-LP1) x̃kLP:

xk = Ýx̃NLP +(1−Ý)x̃kLP, Ý ∈ [0,1].

àF (xk )T is a gradient or subgradient of F at xk .
I If not F(x̃kLP) < ×LP1 or a maximum number of SHs have

been generated, then k is increased and (P-LP1) resolved.



The ESH algorithm 20 | 31

LP2 step

I This step is otherwise identical to LP1, with the exception
that the linear constraints in L are now also included, i.e.,

x̃kLP = argmin
Òk−1∩L

cTx (P-LP2)

I (P-LP2) is repeatedly solved until F(x̃kLP) < ×LP2 or a
maximum number of SHs have additionally been
generated.



The ESH algorithm 20 | 31

LP2 step

I This step is otherwise identical to LP1, with the exception
that the linear constraints in L are now also included, i.e.,

x̃kLP = argmin
Òk−1∩L

cTx (P-LP2)

I (P-LP2) is repeatedly solved until F(x̃kLP) < ×LP2 or a
maximum number of SHs have additionally been
generated.



The ESH algorithm 21 | 31

MILP step

I Finally, in order to also fulfill the integer requirements of
problem (P), a MILP step is performed.

I This step is otherwise identical to LP2, with the exception
that the integer requirements in Y are now additionally
considered, i.e.,

x̃kMILP = argmin
Òk−1∩L∩Y

cTx . (P-MILP)

I (P-MILP) is repeatedly solved until F(x̃kMILP) < ×MILP.

I Intermediate (P-MILP) problems do not need to be solved to
optimality, but in order to guarantee an optimal solution of
(P), the final MILP solution must be optimal.



The ESH algorithm 21 | 31

MILP step

I Finally, in order to also fulfill the integer requirements of
problem (P), a MILP step is performed.

I This step is otherwise identical to LP2, with the exception
that the integer requirements in Y are now additionally
considered, i.e.,

x̃kMILP = argmin
Òk−1∩L∩Y

cTx . (P-MILP)

I (P-MILP) is repeatedly solved until F(x̃kMILP) < ×MILP.

I Intermediate (P-MILP) problems do not need to be solved to
optimality, but in order to guarantee an optimal solution of
(P), the final MILP solution must be optimal.



The ESH algorithm 21 | 31

MILP step

I Finally, in order to also fulfill the integer requirements of
problem (P), a MILP step is performed.

I This step is otherwise identical to LP2, with the exception
that the integer requirements in Y are now additionally
considered, i.e.,

x̃kMILP = argmin
Òk−1∩L∩Y

cTx . (P-MILP)

I (P-MILP) is repeatedly solved until F(x̃kMILP) < ×MILP.

I Intermediate (P-MILP) problems do not need to be solved to
optimality, but in order to guarantee an optimal solution of
(P), the final MILP solution must be optimal.



The ESH algorithm 21 | 31

MILP step

I Finally, in order to also fulfill the integer requirements of
problem (P), a MILP step is performed.

I This step is otherwise identical to LP2, with the exception
that the integer requirements in Y are now additionally
considered, i.e.,

x̃kMILP = argmin
Òk−1∩L∩Y

cTx . (P-MILP)

I (P-MILP) is repeatedly solved until F(x̃kMILP) < ×MILP.

I Intermediate (P-MILP) problems do not need to be solved to
optimality, but in order to guarantee an optimal solution of
(P), the final MILP solution must be optimal.



The ESH algorithm 22 | 31

Now, consider the same example as earlier

minimize cT x = −x1 − x2

subject to 0.15(x1 −8)2 +0.1(x2 −6)2 +0.025ex1x−2
2 −5 ≤ 0

1/x1 +1/x2− x0.5
1 x0.5

2 +4 ≤ 0

2x1 −3x2 −2 ≤ 0

1 ≤ x1 ≤ 20, 1 ≤ x2 ≤ 20, x1 ∈�, x2 ∈�.

5 10 15 20

5

10

15

20

x1

x2

5 10 15 20

5

10

15

20

x1

x2



The ESH algorithm 23 | 31

NLP step – find an interior point

x̃NLP = argmin
(x1 ,x2)∈X

F(x1,x2),

where F(x1,x2) := max{g1(x1,x2), g2(x1,x2)}.

I The problem can be found using a
suitable NLP solver.

I Not required to be the optimal point

I The optimal point here is
(7.45,8.54)

5 10 15 20

5

10

15

20



The ESH algorithm 24 | 31

LP1-step – Iteration 1

I Assume initially that Ò0 = X .

I k = 1, solve LP in Ò,

x̃kLP = argmin
Òk−1

cTx .

5 10 15 20

5

10

15

20

I Do line search
xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.



The ESH algorithm 24 | 31

LP1-step – Iteration 1

I Assume initially that Ò0 = X .

I k = 1, solve LP in Ò,

x̃kLP = argmin
Òk−1

cTx .

5 10 15 20

5

10

15

20

I Do line search
xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.



The ESH algorithm 24 | 31

LP1-step – Iteration 1

I Assume initially that Ò0 = X .

I k = 1, solve LP in Ò,

x̃kLP = argmin
Òk−1

cTx .

5 10 15 20

5

10

15

20

I Do line search
xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.



The ESH algorithm 24 | 31

LP1-step – Iteration 1

I Assume initially that Ò0 = X .

I k = 1, solve LP in Ò,

x̃kLP = argmin
Òk−1

cTx .

5 10 15 20

5

10

15

20

I Do line search
xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.



The ESH algorithm 25 | 31

LP1-step – Iteration 2

I Ò1 = {x |l1(x) ≤ 0, x ∈ X }.

l1(x) = 3.26x1 +0.313x2 −33.9

I k = 2, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .

5 10 15 20

5

10

15

20

I Do line search xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.



The ESH algorithm 25 | 31

LP1-step – Iteration 2

I Ò1 = {x |l1(x) ≤ 0, x ∈ X }.

l1(x) = 3.26x1 +0.313x2 −33.9

I k = 2, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .

5 10 15 20

5

10

15

20

I Do line search xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.



The ESH algorithm 25 | 31

LP1-step – Iteration 2

I Ò1 = {x |l1(x) ≤ 0, x ∈ X }.

l1(x) = 3.26x1 +0.313x2 −33.9

I k = 2, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .

5 10 15 20

5

10

15

20

I Do line search xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.



The ESH algorithm 25 | 31

LP1-step – Iteration 2

I Ò1 = {x |l1(x) ≤ 0, x ∈ X }.

l1(x) = 3.26x1 +0.313x2 −33.9

I k = 2, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .

5 10 15 20

5

10

15

20

I Do line search xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.



The ESH algorithm 26 | 31

LP1-step – Iteration 3

I Ò2 = {x |lj (x) ≤ 0, j ∈ {1,2}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

5 10 15 20

5

10

15

20

I k = 3, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP1-step since F(x̃kLP) < ×LP1.



The ESH algorithm 26 | 31

LP1-step – Iteration 3

I Ò2 = {x |lj (x) ≤ 0, j ∈ {1,2}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

5 10 15 20

5

10

15

20

I k = 3, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP1-step since F(x̃kLP) < ×LP1.



The ESH algorithm 26 | 31

LP1-step – Iteration 3

I Ò2 = {x |lj (x) ≤ 0, j ∈ {1,2}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

5 10 15 20

5

10

15

20

I k = 3, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP1-step since F(x̃kLP) < ×LP1.



The ESH algorithm 26 | 31

LP1-step – Iteration 3

I Ò2 = {x |lj (x) ≤ 0, j ∈ {1,2}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

5 10 15 20

5

10

15

20

I k = 3, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP1-step since F(x̃kLP) < ×LP1.



The ESH algorithm 27 | 31

LP2-step – Iteration 4

I Ò3 = {x |lj (x) ≤ 0, j ∈ {1,2,3}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

l3(x) = 1.66x1 +0.951x2 −26.2
5 10 15 20

5

10

15

20

I k = 4, solve LP now in Ò∩ L ,

x̃kLP = argminÒk−1∩L cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP2-step since F(x̃kLP) < ×LP2.



The ESH algorithm 27 | 31

LP2-step – Iteration 4

I Ò3 = {x |lj (x) ≤ 0, j ∈ {1,2,3}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

l3(x) = 1.66x1 +0.951x2 −26.2
5 10 15 20

5

10

15

20

I k = 4, solve LP now in Ò∩ L ,

x̃kLP = argminÒk−1∩L cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP2-step since F(x̃kLP) < ×LP2.



The ESH algorithm 27 | 31

LP2-step – Iteration 4

I Ò3 = {x |lj (x) ≤ 0, j ∈ {1,2,3}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

l3(x) = 1.66x1 +0.951x2 −26.2
5 10 15 20

5

10

15

20

I k = 4, solve LP now in Ò∩ L ,

x̃kLP = argminÒk−1∩L cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP2-step since F(x̃kLP) < ×LP2.



The ESH algorithm 27 | 31

LP2-step – Iteration 4

I Ò3 = {x |lj (x) ≤ 0, j ∈ {1,2,3}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

l3(x) = 1.66x1 +0.951x2 −26.2
5 10 15 20

5

10

15

20

I k = 4, solve LP now in Ò∩ L ,

x̃kLP = argminÒk−1∩L cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP2-step since F(x̃kLP) < ×LP2.



The ESH algorithm 28 | 31

MILP step – Iterations 5 and 6

5 10 15 20

5

10

15

20

MILP k = 5

5 10 15 20

5

10

15

20

MILP k = 6

I In this step the integer requirements in Y are also
considered, i.e., initially k = 5, Ò=Òk−1 ∩ L ∩Y .

I The MILP steps are required to guarantee an
integer-feasible solution.



The ESH algorithm 29 | 31

Solution and comparisons to other solvers

I Solving the MINLP problem with the supporting hyperplane
algorithm gives the following solution

Type Iteration Obj. funct. x1 x2 F(x1,x2)
LP1 1 −40.0000 20.0000 20.0000 30 359
LP1 2 −28.4720 8.47199 20.0000 14.9321
LP1 3 −21.6378 9.19722 12.4406 0.957382
LP2 4 −21.1639 8.56022 12.6037 0.229455
MILP 5 −20.9065 8.90647 12 0.00442134
MILP 6 −20.9036 8.90362 12 4.22619 ·10−6

I Solution times compared to some other MINLP solvers:

Solver Subproblems solved Time (s) Implementation
ESH 6 MILP (6 OPT) 0.7 Prototype in Mathematica + CBC
ECP 21 MILP (10 OPT) + 1 NLP 1.4 GAMS 24.2 + CPLEX
DICOPT 10 NLP + 10 MILP 1.5 GAMS 24.2 + CONOPT + CPLEX



The ESH algorithm 29 | 31

Solution and comparisons to other solvers

I Solving the MINLP problem with the supporting hyperplane
algorithm gives the following solution

Type Iteration Obj. funct. x1 x2 F(x1,x2)
LP1 1 −40.0000 20.0000 20.0000 30 359
LP1 2 −28.4720 8.47199 20.0000 14.9321
LP1 3 −21.6378 9.19722 12.4406 0.957382
LP2 4 −21.1639 8.56022 12.6037 0.229455
MILP 5 −20.9065 8.90647 12 0.00442134
MILP 6 −20.9036 8.90362 12 4.22619 ·10−6

I Solution times compared to some other MINLP solvers:

Solver Subproblems solved Time (s) Implementation
ESH 6 MILP (6 OPT) 0.7 Prototype in Mathematica + CBC
ECP 21 MILP (10 OPT) + 1 NLP 1.4 GAMS 24.2 + CPLEX
DICOPT 10 NLP + 10 MILP 1.5 GAMS 24.2 + CONOPT + CPLEX



The ESH algorithm 30 | 31

Some test cases

Problem # variables # binaries # lin. constrs # nonlin. constrs
Synthes2 12 5 11 3
Ravempb 112 54 185 1

Syntes 2

Solver Subproblems solved Time (s)
ESH 7 + 6 + 24 = 37 MILP (37 OPT) 0.8
ECP 64 MILP (28 OPT) 3.8
ECP + NLP 21 MILP (10 OPT) + 1 NLP 1.5
DICOPT 7 NLP + 7 MILP 0.8

Ravempb

Solver Subproblems solved Time (s)
ESH 5 + 8 + 8 = 21 MILP (21 OPT) 6.1
ECP 62 MILP (15 OPT) 5.4
ECP + NLP 62 MILP (15 OPT) + 1 NLP 5.4
DICOPT 7 NLP + 7 MILP 2.4



The ESH algorithm 30 | 31

Some test cases

Problem # variables # binaries # lin. constrs # nonlin. constrs
Synthes2 12 5 11 3
Ravempb 112 54 185 1

Syntes 2

Solver Subproblems solved Time (s)
ESH 7 + 6 + 24 = 37 MILP (37 OPT) 0.8
ECP 64 MILP (28 OPT) 3.8
ECP + NLP 21 MILP (10 OPT) + 1 NLP 1.5
DICOPT 7 NLP + 7 MILP 0.8

Ravempb

Solver Subproblems solved Time (s)
ESH 5 + 8 + 8 = 21 MILP (21 OPT) 6.1
ECP 62 MILP (15 OPT) 5.4
ECP + NLP 62 MILP (15 OPT) + 1 NLP 5.4
DICOPT 7 NLP + 7 MILP 2.4



The ESH algorithm 31 | 31

Future work

Implementations of the algorithm

I Mathematica / Wolfram Language. Early prototype
“available”.

I COIN-OR: Utilize the Optimization Services and Open
Solver Interface APIs.

I GAMS: Utilize the COIN-OR GAMSLinks API?

Development of the algorithm

I Pseudoconvex constraints and objective functions.

I Selection (update) strategies of the interior point.

I Strategies for the LP1/LP2 steps.



The ESH algorithm 31 | 31

Future work

Implementations of the algorithm

I Mathematica / Wolfram Language. Early prototype
“available”.

I COIN-OR: Utilize the Optimization Services and Open
Solver Interface APIs.

I GAMS: Utilize the COIN-OR GAMSLinks API?

Development of the algorithm

I Pseudoconvex constraints and objective functions.

I Selection (update) strategies of the interior point.

I Strategies for the LP1/LP2 steps.


	The ECP algorithm
	The ESH algorithm

