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Nonsmooth DC Optimization

Functions can be presented as a difference of two convex functions
and such functions are called DC functions

Functions need not to be differentiable

The general problem is that nonsmooth functions are typically not
differentiable at their minimizers

When the gradient does not exist at every point, we cannot utilize
the classical theory of optimization or smooth gradient based
methods
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DC Optimization

Any twice continuously differentiable function can be presented as a
DC function

Any continuous function can be approximated by the sequence of
DC functions

Many optimization problems can be expressed into the form of a DC
program such as

– Production-transportation planning
– Location planning
– Engineering design
– Cluster analysis
– Multiobjective programming
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Problem

Nonsmooth DC problem

We consider an unconstrained minimization problem of the form{
min f(x)

s. t. x ∈ Rn,

where

Objective function f : Rn → R is

– assumed to be a DC function
– not required to have continuous derivatives
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DC Functions

Definition 1
A function f : Rn → R is called a DC function if it can be written in the
form

f(x) = f1(x)− f2(x),

where f1 and f2 are convex functions on Rn.

Functions f1 and f2 are called DC components of f and in what
follows they are assumed be finite on Rn

If f is nonsmooth then at least one of the functions f1 and f2 is
nonsmooth

DC functions are locally Lipschitz continuous and usually also
nonconvex
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Convex Analysis

Next we consider the convex DC components fi : Rn → R, i = 1, 2.

Definition 2
The subdifferential of fi at x ∈ Rn is a set

∂fi(x) =
{
ξi ∈ Rn | fi(y) ≥ fi(x) + ξTi (y − x) for all y ∈ Rn

}
.

Each vector ξi ∈ ∂fi(x) is called a subgradient of fi at x.

Definition 3
Let ε ≥ 0, the ε-subdifferential of fi at x ∈ Rn is a set

∂εfi(x) =
{
ξi ∈ Rn | fi(y) ≥ fi(x) + ξTi (y − x)− ε for all y ∈ Rn

}
.

Each vector ξi ∈ ∂εfi(x) is called an ε-subgradient of fi at x.
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Necessary Optimality Condition for a DC Function

Theorem 4

(Toland, 1979) If x∗ ∈ Rn is a local minimizer of f = f1 − f2, then

∂f2(x∗) ⊂ ∂f1(x∗).

Definition 5
Let ε ≥ 0, a point x∗ ∈ Rn is called an ε-critial point, if it satisfies the
condition

∂εf2(x∗) ∩ ∂εf1(x∗) 6= ∅.
If ε = 0, then x∗ is said to be a critical point.

Solution candidates of our bundle method PBDC are ε-critial points
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About the New Cutting Plane Model

Used to determine a search direction in our bundle algorithm

Utilizes explicitly the DC decomposition of the objective function f

The main idea in model construction:

– Approximate the subdifferentials of both DC components fi
with a bundle

– Two separate bundles which consist of subgradients from the
previous iterations

– Use subgradient information to construct separately an
approximation for each DC component fi

– Combine the separate approximations to obtain a piecewise
linear cutting plane model for the original objective function f
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Bundles for DC Components

Assumption: At each point x ∈ Rn we can evaluate the values of
DC components f1(x) and f2(x) as well as arbitrary subgradients
ξ1 ∈ ∂f1(x) and ξ2 ∈ ∂f2(x)

At the current iteration point xk our bundle for fi is denoted by

Bki =
{

(yj , fi(yj), ξi,j) | j ∈ Jk
i

}
,

where

– the subscript i tells the DC component fi in question

– yj ∈ Rn is an auxiliary point

– ξi,j ∈ ∂fi(yj) is a subgradient

– Jk
i is a nonempty set of indices
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Approximations for DC Components

A convex piecewise linear approximation of the convex DC
component fi can be constructed by

f̂ki (x) = max
j∈Jk

i

{
fi(xk) + (ξi,j)

T (x− xk)− αk
i,j

}
with the linearization error

αk
i,j = fi(xk)− fi(yj)− (ξi,j)

T (xk − yj) ≥ 0 for all j ∈ Jk
i

f̂ki (x) is a convex function and f̂ki (x) ≤ fi(x)

This approximation is the classical cutting plane model used in
convex bundle methods (see e.g.: Kiwiel, 1990; Mäkelä, 2002)
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New Cutting Plane Model

The new cutting plane model of the objective function f is defined
by

f̂k(x) = f̂k1 (x)− f̂k2 (x)

This model can be rewritten in an equivalent form

f̂k(xk + d) = f(xk) + ∆k
1(d) + ∆k

2(d),

where

– d = x− xk is the search direction

– ∆k
1(d) = maxj∈Jk

1

{
(ξ1,j)

Td− αk
1,j

}
– ∆k

2(d) = minj∈Jk
2

{
−(ξ2,j)

Td+ αk
2,j

}
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Search Direction

To determine the search direction dkt we need to solve globally the
nonsmooth nonconvex DC problem

min
d∈Rn

{
P k(d) = ∆k

1(d) + ∆k
2(d) +

1

2t
‖d‖2

}
(1)

where

t is the classical proximity parameter used in bundle methods
1
2t‖d‖2 is a stabilizing term which

– guarantees the existence of the solution dkt
– keeps the approximation local enough

The solution dkt is got by using a specific approach (An & Tao, 1997)
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Subproblems

The objective function P k(d) can be written as

P k(d) = min
i∈Jk

2

{
P k
i (d) = ∆k

1(d)− (ξ2,i)
Td+ αk

2,i +
1

2t
‖d‖2

}
Hence the problem (1) takes the form

min
d∈Rn

min
i∈Jk

2

{
P k
i (d)

}
= min

i∈Jk
2

min
d∈Rn

{
P k
i (d)

}
To obtain the solution dkt of the problem (1) we first solve
separately for each i ∈ Jk

2 the convex subproblem

min
d∈Rn

{
P k
i (d)

}
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Global Solution

Each subproblem is of the type usually encountered in bundle
methods and it can be reformulated as a smooth quadratic problem

The subproblem minimizer is denoted by dkt (i), for i ∈ Jk
2

The global solution is

dkt = dkt (i∗) where i∗ = arg min
i∈Jk

2

{
P k
i

(
dkt (i)

)}
The value

∆k
1(dkt ) + ∆k

2(dkt ) ≤ 0

can be used as a predicted descent of f
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Assumptions and Global Parameters

The new bundle algorithm PBDC requires the following

global parameters:

– the criticality tolerance δ > 0 and the proximity measure ε > 0
– the decrease and increase parameters r ∈ (0, 1) and R > 1
– the descent parameter m ∈ (0, 1)

assumptions:

A1 The set F0 = {x ∈ Rn | f(x) ≤ f(x0)} is compact
A2 Lipschitz constants L1 > 0 and L2 > 0 of f1 and f2 are known

(or approximated) on the set F = {x ∈ Rn | d(x,F0) ≤ ε}.

The algorithm is based on three different bundle methods (Fuduli et al.:
2004a, 2004b, 2013)
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PBDC: Proximal Bundle Algorithm for DC Optimization

BUNDLE ALGORITHM

Step 0. (Initialization) Select a starting point x0 ∈ Rn and global parameters.
Set k = 0 and initialize the bundles by setting

Bk
1 =

{(
x0, f1(x0), ξ1(x0)

)}
and Bk

2 =
{(
x0, f2(x0), ξ2(x0)

)}
,

where ξ1(x0) ∈ ∂f1(x0) and ξ2(x0) ∈ ∂f2(x0).

Step 1. (Main iteration) Execute the ’main iteration’. This either yields a new
iteration point xk+1 = xk + dk

t or stops the algorithm with xk as the
final solution.

Step 2. (Bundle update) Choose Bk+1
1 ⊆ Bk

1 and Bk+1
2 ⊆ Bk

2 . After this add the
element

(
xk+1, f1(xk+1), ξ1(xk+1)

)
into Bk+1

1 and
(
xk+1, f2(xk+1), ξ2(xk+1)

)
into Bk+1

2 .

Finally set k = k + 1 and go back to Step 1.
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Main Iteration Algorithm

Initialization of parameters: tmin, tmax, t ∈ [tmin, tmax] and θ.

Stopping condition:
‖ξ1(xk)− ξ2(xk)‖ < δ ? STOP

Search direction:
Calculate dt

‖dt‖ < θ ?
Does Approximate

stopping condition

hold?

STOP

Decrease tmax and
select t ∈ [tmin, tmax]

Descent test:
f(xk + dt) − f(xk) ≤
m
(

∆1(dt) + ∆2(dt)
)
?

Bundle update:
Either decrease t

or
update the bundle B1
and possibly also B2

EXIT with the
new iteration point
xk+1 = xk + dt

Yes

No

No

Yes

No

Yes

Yes

No
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Approximate Stopping Condition

For i = 1, 2, remove from the bundle Bi those triplets where the
linearization error αi,j > ε

Calculate values ξ∗1 and ξ∗2 such that

‖ξ∗1 − ξ∗2‖ =
{
min ‖ξ1 − ξ2‖
s. t. ξ1 ∈ conv{ξ1,j | j ∈ J1} and ξ2 ∈ conv{ξ2,j | j ∈ J2},

where conv denotes the convex hull of a set

If ‖ξ∗1 − ξ∗2‖ < δ then ε-criticality is achieved
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Convergence

Theorem 6

The ’main iteration’ terminates after a finite number of steps.

Theorem 7
For any parameter δ > 0 and ε > 0, the execution of the new bundle
algorithm stops after a finite number of ’main iterations’ at a point x∗

satisfying the approximate ε-criticality condition

‖ξ∗1 − ξ∗2‖ ≤ δ with ξ∗1 ∈ ∂εf1(x∗) and ξ∗2 ∈ ∂εf2(x∗).
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Implementation

The algorithm PBDC is implemented in double precision Fortran 95

Subroutines PLQDF1 and PVMM by Lukšan are used to solve the
quadratic subproblems and the norm minimization problem (Lukšan:
1984, 2000)

Results are compared to the proximal bundle algorithm MPBNGC
(Mäkelä et al., 1992) and to the truncated codifferential method
TCM (Bagirov et al., 2011)

Tests are performed on an Intelr CoreTM i5-2400 CPU (3.10GHz,
3.10GHz)
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Parameters Used in PBDC

The parameters of PBDC are tuned as follows:

the criticality tolerance δ = 0.005n and the proximity measure ε = 0.1

the decrease parameter r = 0.75, if n < 10, and otherwise r is selected to
be the first two decimals of n/(n+ 5)

the increase parameter R = 107

the descent parameter m = 0.2

the size of the bundle B1 is set to n+ 5

the size of the bundle B2 is set to 3

Lipschitz constants L1 = L2 = 1000
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Nonsmooth Test Problems

Extensions of classical academic minimization problems (Bagirov et al.,
2011)

Problem 1

f1(x) = max{f11 (x), f21 (x), f31 (x)}+ f12 (x) + f22 (x) + f32 (x),

f2(x) = max{f12 (x) + f22 (x), f
2
2 (x) + f32 (x), f

1
2 (x) + f32 (x)},

f11 (x) = x41 + x22, f
2
1 (x) = (2− x1)2 + (2− x2)2, f31 (x) = 2e−x1+x2 ,

f12 (x) = x21 − 2x1 + x22 − 4x2 + 4, f22 (x) = 2x21 − 5x1 + x22 − 2x2 + 4,

f32 (x) = x21 + 2x22 − 4x2 + 1,

x∗ = (1, 1), f∗ = 2.

Problem 2 L1 version of Rosenbrock function

f1(x) = |x1 − 1|+ 200max{0, |x1| − x2}, f2(x) = 100(|x1| − x2)
x∗ = (1, 1), f∗ = 0
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Nonsmooth Test Problems

Problem 3 L1 version of Wood function

f1(x) = |x1 − 1|+ 200max{0, |x1| − x2}+ 180max{0, |x3| − x4}
+ |x3 − 1|+ 10.1(|x2 − 1|+ |x4 − 1|) + 4.95|x2 + x4 − 2|,

f2(x) = 100(|x1| − x2) + 90(|x3| − x4) + 4.95|x2 − x4|
x∗ = (1, 1, 1, 1), f∗ = 0

Problem 4 DC Maxl

f1(x) = nmax {|xi| : i = 1, . . . , n} , f2(x) =
∑n

i=1
|xi|

|x∗i | = α for all i, α ∈ R+, f∗ = 0

Problem 5

f1(x) = x2 + 0.1(x21 + x22) + 10max {0,−x2} , f2(x) = |x1|+ |x2|
x∗ = (5, 0), f∗ = −2.5
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Numerical Results

PBDC MPBNGC TCM
n nf nξ1

nξ2
nf , nξ nf nξ

Problem 1 2 22 17 16 15 246 90

Problem 2 2 18 11 11 36 332 107
Problem 3 4 23 12 9 61 405 167

Problem 4
5 13 6 5 25 235 108
20 25 21 8 130 960 451
100 102 102 30 1433 7064 3471

Problem 5 2 27 19 15 29 − −

Solvers PBDC and MPBNGC yielded the same global minimizer or best known
solution in each test problem

Solutions obtained by using PBDC were the most accurate ones

Results for TCM are from the article (Bagirov et al., 2011)
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Conclusions

We have developed a new version of the bundle method for nonsmooth
DC optimization

Main requirements are the DC decomposition of f and Lipschitz
constants of DC components fi

Finds always an ε-critical point after a finite number of steps

Even though the solution is not necessarily an approximate local
minimizer, each local minimizer of f can be found among the set of
ε-critical points

Preliminary computational results seem to be very promising

Especially the solutions obtained have been nearly always the global
minimizers or the best known solutions
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Thank you for your attention!
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