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min f (x ,C ) = (f1(x ,C1), f2(x ,C2), . . . , fs(x ,Cs)),

s. t. x ∈ X ,

where s ≥ 2; x = (x1, x2, . . . , xn)T ∈ X ⊂ Zn, n ∈ N; Ck ∈ Rm×n is the
k-th cut of C = [cijk ] ∈ Rm×n×s .

Ps(C ) = {x ∈ X : @x ′ ∈ X (f (x ,C ) ≥ f (x ′,C ) & f (x ,C ) 6= f (x ′,C ))}.
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n is a number of alternative investment projects;

m is a number of predictive states (situations) of the market, i.e. a number
of scenario variants;
x = (x1, x2, . . . , xn)T is an investment project portfolio;
xj = 1 if the j-th project, j ∈ Nn = {1, 2, . . . , n}, is being chosen, and
xj = 0 otherwise;
X ⊂ En, E = {0, 1}, is the set of all investment portfolios;
The initial data are two matrices: an efficiency matrix E = [eijk ] ∈ Rm×n×s

and a risk matrix R = [rijk ] ∈ Rm×n×s ;
eijk is efficiency of the k-th type, evaluating project j ∈ Nn in the case,
when the market is in the state i ∈ Nm = {1, 2, . . . ,m};
rijk is the risk measure of the k-th type, which an investor may face if (s)he
chooses j-th project in i-th market state.
For each market state i ∈ Nm and each risk type k ∈ Ns , investment
portfolio x ∈ X is evaluated by index of efficiency and risk (additive
functions): ∑

j∈Nn

eijkxj and
∑
j∈Nn

rijkxj .
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Savage’s criteria

fk(x ,Rk) = max
i∈Nm

Rikx = max
i∈Nm

∑
j∈Nn

rijkxj → min
x∈X

, k ∈ Ns ,

where Rk ∈ Rm×n is the k-th cut R = [rijk ] ∈ Rm×n×s with rows
Rik = (ri1k , ri2k , . . . , rink) ∈ Rn, i ∈ Nm.
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fk(x ,Ek) = min
i∈Nm

Eikx = min
i∈Nm

∑
j∈Nn

rijkxj → max
x∈X

, k ∈ Ns ,
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‖C‖ppp =
∥∥∥(‖C1‖pp, ‖C2‖pp, . . . , ‖Cs‖pp

)∥∥∥
p
−

the norm of the matrix,

‖Ck‖pp = ‖(‖C1k‖p, ‖C2k‖p, . . . , ‖Cmk‖p)‖p, k ∈ Ns ,

‖a‖p =


( ∑
k∈Ns

|ak |p
)1/p

if 1 ≤ p <∞,

max{|ak | : k ∈ Ns} if p =∞,

a = (a1, a2, . . . , as) ∈ Rs .



‖C‖ppp =
∥∥∥(‖C1‖pp, ‖C2‖pp, . . . , ‖Cs‖pp

)∥∥∥
p
−

the norm of the matrix,

‖Ck‖pp = ‖(‖C1k‖p, ‖C2k‖p, . . . , ‖Cmk‖p)‖p, k ∈ Ns ,

‖a‖p =


( ∑
k∈Ns

|ak |p
)1/p

if 1 ≤ p <∞,

max{|ak | : k ∈ Ns} if p =∞,

a = (a1, a2, . . . , as) ∈ Rs .



‖C‖ppp =
∥∥∥(‖C1‖pp, ‖C2‖pp, . . . , ‖Cs‖pp

)∥∥∥
p
−

the norm of the matrix,

‖Ck‖pp = ‖(‖C1k‖p, ‖C2k‖p, . . . , ‖Cmk‖p)‖p, k ∈ Ns ,

‖a‖p =


( ∑
k∈Ns

|ak |p
)1/p

if 1 ≤ p <∞,

max{|ak | : k ∈ Ns} if p =∞,

a = (a1, a2, . . . , as) ∈ Rs .







The stability radius of a Pareto-optimal portfolio x0:

ρs(x0,C , p, p, p) =

{
sup Ξ if Ξ 6= ∅,
0 if Ξ = ∅,

where
Ξ = {ε > 0 : ∀C ′ ∈ Ω(ε) (x0 ∈ Ps(C + C ′)},

Ω(ε) = {C ′ ∈ Rm×n×s : ‖C ′‖ppp < ε}.



Theorem 1

Let
ϕ1 = min

x∈X\{x0}
max
k∈Ns

min
i0∈Nm

max
i∈Nm

(Rikx − Ri0kx
0),

ϕ2 = min
x∈X\{x0}

∑
k∈Ns

[ min
i ′∈Nm

max
i∈Nm

(Rikx − Ri ′kx
0)]+,

where
[a]+ = max{0, a},

then
ϕ1 ≤ ρs(x0,R, 1, 1,∞) ≤ mϕ1,

ϕ2 ≤ ρs(x0,R, 1, 1, 1) ≤ mϕ2.
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Theorem 2

Let

ϕ3 = min
x∈X\{x0}

‖[g(x , x0,R)]+‖∞
‖x‖p′ + ‖x0‖p′

, ψ3 = min
x∈X\{x0}

‖[g(x , x0,R)]+‖∞
‖x − x0‖p′

,

ϕ4 = min
x∈X\{x0}

‖[g(x , x0,R)]+‖∞
‖x + x0‖1

, ψ4 = min
x∈X\{x0}

‖[g(x , x0,R)]+‖∞
‖x − x0‖1

,

ϕ5 = min
x∈X\{x0}

‖[g(x , x0,R)]+‖p
‖x + x0‖1

, ψ5 = min
x∈X\{x0}

‖[g(x , x0,R)]+‖p
‖x − x0‖1

,

where g(x , x0,R) = f (x ,R)− f (x0,R), 1/p + 1/p′ = 1, then

ϕ3 ≤ ρs(x0,R, p,∞,∞) ≤ ψ3,

ϕ4 ≤ ρs(x0,R,∞, p,∞) ≤ m1/pψ4,

ϕ5 ≤ ρs(x0,R,∞,∞, p) ≤ ψ5.



The stability radius of a Pareto-optimal portfolio x0:

ρ2(x0,E ,R,∞,∞,∞) =

{
sup Ξ if Ξ 6= ∅,
0 if Ξ = ∅,

Ξ = {ε > 0 : ∀(E ′,R ′) ∈ Ω(ε) (x0 ∈ P(E + E ′,R + R ′))},

Ω(ε) = {(E ′,R ′) ∈ Rm×n × Rm×n : max{‖E ′‖∞∞, ‖R ′‖∞∞} < ε}.



Theorem 3

Let

ϕ6 = min
x∈X\{x0}

γ(x0, x)

‖x0 + x‖1
, ψ6 = min

x∈X\{x0}

γ(x0, x)

‖x0 − x‖1
,

where

γ(x0, x) = max
{
max
i∈Nm

min
i ′∈Nm

(Ei ′x
0 − Eix), min

i∈Nm

max
i ′∈Nm

(Ri ′x − Rix
0)
}
,

then
ϕ6 ≤ ρ2(x0,E ,R,∞,∞,∞) ≤ ψ6.



The stability radius of the problem:

ρs(C , p, p, p) =

{
sup Ξ if Ξ 6= ∅,
0 if Ξ = ∅,

where
Ξ = {ε > 0 : ∀C ∈ Ω(ε) (Ps(C + C ′) ⊆ Ps(C )},

Ω(ε) = {C ′ ∈ Rm×n×s : ‖C ′‖ppp < ε}.



Theorem 4

Let
ϕ7 = min

x 6∈Ps(E)
max

x ′∈Ps(x ,E)
min
k∈Ns

max
i∈Nm

min
i ′∈Nm

(Ei ′kx
′ − Eikx),

ϕ8 = min
x 6∈Ps(R)

max
x ′∈Ps(x ,R)

min
k∈Ns
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max
i∈Nm

Rikx − Ri ′kx
′
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The stability radius of the problem:

ρ2(E ,R, p, p,∞) =

{
sup Ξ if Ξ 6= ∅,
0 if Ξ = ∅,

where

Ξ = {ε > 0 : ∀(E ′,R ′) ∈ Ω(ε) (P(E + E ′,R + R ′) ⊆ P(E ,R))},
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Theorem 5

Let

ϕ9 = min
x 6∈P(E ,R)

max
x ′∈P(x ,E ,R)

γ(x , x ′)

‖(‖x‖q, ‖x ′‖q)‖q
,

ψ9 = min
x 6∈P(E ,R)

max
x ′∈P(x ,E ,R)

γ(x , x ′)

‖x − x ′‖1
,

γ(x , x ′) = min{f1(x ′,E )− f1(x ,E ), f2(x ,R)− f2(x ′,R)},

then
ϕ9 ≤ ρ2(E ,R, p, p,∞) ≤ (mn)1/pψ9.



Example

Let m = 2, n = 3,
X = {x1, x2, x3}, x1 = (1, 1, 0), x2 = (1, 0, 1), x3 = (0, 1, 1),

the matrices E ∈ R2×3 and R ∈ R2×3:

E =

(
1 0 0
0 1 2

)
, R =

(
0 1 0
0 1 1

)
.

Then
f (x1) = (1, 1), f (x2) = (2, 1), f (x3) = (3, 2),

P(E ,R) = {x2, x3},

x1 6∈ P(E ,R).

ϕ = ψ = 0.
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the matrices E ∈ R2×3 and R ∈ R2×3:

E =

(
0 1 2
0 0 1

)
, R =

(
2 2 1
1 3 1

)
.

Then
f (x1) = (1, 4), f (x2) = (2, 3), f (x3) = (3, 4),

P(E ,R) = {x2, x3},
x1 6∈ P(E ,R).

For 1 ≤ p ≤ ∞

ϕ = max{ 1
41−1/p , 0} =

1
41−1/p ,

ψ = max{1
2
, 0} =

1
2
.

For p =∞

ϕ = 1/4,

ψ = 1/2.



Example
Let m = 2, n = 3,
X = {x1, x2, x3}, x1 = (1, 1, 0), x2 = (1, 0, 1), x3 = (0, 1, 1),
the matrices E ∈ R2×3 and R ∈ R2×3:

E =

(
0 1 2
0 0 1

)
, R =

(
2 2 1
1 3 1

)
.

Then
f (x1) = (1, 4), f (x2) = (2, 3), f (x3) = (3, 4),

P(E ,R) = {x2, x3},
x1 6∈ P(E ,R).

For 1 ≤ p ≤ ∞

ϕ = max{ 1
41−1/p , 0} =

1
41−1/p ,

ψ = max{1
2
, 0} =

1
2
.

For p =∞

ϕ = 1/4,

ψ = 1/2.



Example
Let m = 2, n = 3,
X = {x1, x2, x3}, x1 = (1, 1, 0), x2 = (1, 0, 1), x3 = (0, 1, 1),
the matrices E ∈ R2×3 and R ∈ R2×3:

E =

(
0 1 2
0 0 1

)
, R =

(
2 2 1
1 3 1

)
.

Then
f (x1) = (1, 4), f (x2) = (2, 3), f (x3) = (3, 4),

P(E ,R) = {x2, x3},
x1 6∈ P(E ,R).

For 1 ≤ p ≤ ∞

ϕ = max{ 1
41−1/p , 0} =

1
41−1/p ,

ψ = max{1
2
, 0} =

1
2
.

For p =∞

ϕ = 1/4,

ψ = 1/2.



Example

f (x1) = (1, 4),

f (x2) = (2, 3),

f (x3) = (3, 4),

P(E ,R) = {x2, x3},

x1 6∈ P(E ,R).



Example

Let m = 2, n = 3,
X = {x1, x2, x3}, x1 = (1, 1, 0), x2 = (1, 0, 1), x3 = (0, 1, 1),
the matrices E ∈ R2×3 and R ∈ R2×3, p =∞, ϕ = 1/4, ψ = 1/2:

E + E 0 =

(
0 1 2
0 0 1

)
, R + R0 =

(
2−1/2 2−1/2 1+1/2
1−1/2 3−1/2 1−1/2

)
.

Then
f (x1) = (1, 3), f (x2) = (2, 3), f (x3) = (3, 3),

P(E + E 0,R + R0) = {x3},

x1, x2 6∈ P(E + E 0,R + R0).



Example

Let m = 2, n = 3,
X = {x1, x2, x3}, x1 = (1, 1, 0), x2 = (1, 0, 1), x3 = (0, 1, 1),
the matrices E ∈ R2×3 and R ∈ R2×3, p =∞, ϕ = 1/4, ψ = 1/2:

E + E 0 =

(
0 1 2
0 0 1

)
, R + R0 =

(
2−1/2 2−1/2 1+1/2
1−1/2 3−1/2 1−1/2

)
.

Then
f (x1) = (1, 3), f (x2) = (2, 3), f (x3) = (3, 3),

P(E + E 0,R + R0) = {x3},

x1, x2 6∈ P(E + E 0,R + R0).



Example

f (x1) = (1, 3),

f (x2) = (2, 3),

f (x3) = (3, 3),

P(E + E 0,R + R0) = {x3},

x1, x2 6∈ P(E + E 0,R + R0).



Example

Let m = 2, n = 3,
X = {x1, x2, x3}, x1 = (1, 1, 0), x2 = (1, 0, 1), x3 = (0, 1, 1),
the matrices E ∈ R2×3 and R ∈ R2×3, p =∞, ϕ = 1/4, ψ = 1/2:

E + E 0 =

(
0 1 2
0 0 1

)
, R + R0 =

(
2−1/2− ε 2−1/2 1+1/2 + ε
1−1/2− ε 3−1/2 1−1/2 + ε

)
.

Then
f (x1) = (1, 3− ε), f (x2) = (2, 3), f (x3) = (3, 3 + ε),

P(E + E 0,R + R0) = {x1, x2, x3}.



Example

Let m = 2, n = 3,
X = {x1, x2, x3}, x1 = (1, 1, 0), x2 = (1, 0, 1), x3 = (0, 1, 1),
the matrices E ∈ R2×3 and R ∈ R2×3, p =∞, ϕ = 1/4, ψ = 1/2:

E + E 0 =

(
0 1 2
0 0 1

)
, R + R0 =

(
2−1/2− ε 2−1/2 1+1/2 + ε
1−1/2− ε 3−1/2 1−1/2 + ε

)
.

Then
f (x1) = (1, 3− ε), f (x2) = (2, 3), f (x3) = (3, 3 + ε),

P(E + E 0,R + R0) = {x1, x2, x3}.



Example

f (x1) = (1, 3− ε),

f (x2) = (2, 3),

f (x3) = (3, 3 + ε),

P(E + E 0,R + R0) = {x1, x2, x3}.



Example

f (x1) = (1, 3− ε),

f (x2) = (2, 3),

f (x3) = (3, 3 + ε),

P(E + E 0,R + R0) = {x1, x2, x3}.



Thank you for your attention!


