
An extended supporting hyperplane
algorithm for convex MINLP problems

Jan Kronqvist, Andreas Lundell and Tapio Westerlund

Center of Excellence in

Optimization and Systems Engineering

Åbo Akademi University, Finland

OSE annual seminar
Turku
November 14, 2014



2 | 37

Contents of the talk

I The extended cutting plane (ECP) algorithm is briefly
introduced.

I The extended supporting hyperplane (ESH) algorithm, a
new algorithm for solving convex MINLP problems to
global optimality, is introduced

. Cutting planes are replaced with supporting hyperplanes
using a line search procedure.

. Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.



2 | 37

Contents of the talk

I The extended cutting plane (ECP) algorithm is briefly
introduced.

I The extended supporting hyperplane (ESH) algorithm, a
new algorithm for solving convex MINLP problems to
global optimality, is introduced

. Cutting planes are replaced with supporting hyperplanes
using a line search procedure.

. Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.



The ECP algorithm



The ECP algorithm 4 | 37

The extended cutting plane algorithm

I The ECP algorithm is a solver for generally convex
mixed-integer nonlinear programming (MINLP) problems.

I Solves MILP relaxations of the MINLP problem where the
nonlinear constraints are approximated using cutting
planes.

I Implemented, e.g., in the AlphaECP solver in GAMS and
available on the NEOS server.



The ECP algorithm 4 | 37

The extended cutting plane algorithm

I The ECP algorithm is a solver for generally convex
mixed-integer nonlinear programming (MINLP) problems.

I Solves MILP relaxations of the MINLP problem where the
nonlinear constraints are approximated using cutting
planes.

I Implemented, e.g., in the AlphaECP solver in GAMS and
available on the NEOS server.



The ECP algorithm 4 | 37

The extended cutting plane algorithm

I The ECP algorithm is a solver for generally convex
mixed-integer nonlinear programming (MINLP) problems.

I Solves MILP relaxations of the MINLP problem where the
nonlinear constraints are approximated using cutting
planes.

I Implemented, e.g., in the AlphaECP solver in GAMS and
available on the NEOS server.



The ECP algorithm 5 | 37

The extended cutting plane algorithm

I First presented in internal report in 1992

I Inspired by Kelley’s cutting plane method
. Convex NLP problems Kelley Jr. J., The cutting-plane

method for solving convex programs, Journal of the
SIAM, vol. 8(4), pp. 703–712, 1960.

I Published in Computers & Chemical Engineering in 1995
. Westerlund T. and Pettersson F., An extended cutting

plane method for solving convex MINLP problems,
Computers & Chemical Engineering 19, pp. 131–136,
1995.



The ECP algorithm 6 | 37

Extensions

Pseudoconvex constraints Westerlund T., Skrifvars H.,
Harjunkoski I. and Pörn R. An extended cutting plane method
for solving a class of non-convex MINLP problems.
Computers and Chemical Engineering, 22, 357–365, 1998.

Pseudoconvex objective function and constraints Westerlund
T. and Pörn R. Solving Pseudo-Convex Mixed Integer
Optimization Problems by Cutting Plane techniques.
Optimization and Engineering, 3, 253–280, 2002.

Nonsmooth constraints Eronen V.-P., Mäkelä M. M. and
Westerlund T. On the generalization of ECP and OA methods
to nonsmooth convex MINLP problems, Taylor and Francis,
2014.



The ECP algorithm 6 | 37

Extensions

Pseudoconvex constraints Westerlund T., Skrifvars H.,
Harjunkoski I. and Pörn R. An extended cutting plane method
for solving a class of non-convex MINLP problems.
Computers and Chemical Engineering, 22, 357–365, 1998.

Pseudoconvex objective function and constraints Westerlund
T. and Pörn R. Solving Pseudo-Convex Mixed Integer
Optimization Problems by Cutting Plane techniques.
Optimization and Engineering, 3, 253–280, 2002.

Nonsmooth constraints Eronen V.-P., Mäkelä M. M. and
Westerlund T. On the generalization of ECP and OA methods
to nonsmooth convex MINLP problems, Taylor and Francis,
2014.



The ECP algorithm 6 | 37

Extensions

Pseudoconvex constraints Westerlund T., Skrifvars H.,
Harjunkoski I. and Pörn R. An extended cutting plane method
for solving a class of non-convex MINLP problems.
Computers and Chemical Engineering, 22, 357–365, 1998.

Pseudoconvex objective function and constraints Westerlund
T. and Pörn R. Solving Pseudo-Convex Mixed Integer
Optimization Problems by Cutting Plane techniques.
Optimization and Engineering, 3, 253–280, 2002.

Nonsmooth constraints Eronen V.-P., Mäkelä M. M. and
Westerlund T. On the generalization of ECP and OA methods
to nonsmooth convex MINLP problems, Taylor and Francis,
2014.



The ECP algorithm 7 | 37

An example

minimize cT x = −x1 − x2

subject to g1(x1,x2) = 0.15(x1 −8)2 +0.1(x2 −6)2 +0.025ex1x−2
2 −5 ≤ 0

g2(x1,x2) = 1/x1 +1/x2− x0.5
1 x0.5

2 +4 ≤ 0

2x1 −3x2 −2 ≤ 0

1 ≤ x1 ≤ 20, 1 ≤ x2 ≤ 20, x1 ∈�, x2 ∈�.

5 10 15 20

5

10

15

20

x1

x2

5 10 15 20

5

10

15

20

x1

x2



The ECP algorithm 7 | 37

An example

minimize cT x = −x1 − x2

subject to g1(x1,x2) = 0.15(x1 −8)2 +0.1(x2 −6)2 +0.025ex1x−2
2 −5 ≤ 0

g2(x1,x2) = 1/x1 +1/x2− x0.5
1 x0.5

2 +4 ≤ 0

2x1 −3x2 −2 ≤ 0

1 ≤ x1 ≤ 20, 1 ≤ x2 ≤ 20, x1 ∈�, x2 ∈�.

5 10 15 20

5

10

15

20

x1

x2

5 10 15 20

5

10

15

20

x1

x2



The ECP algorithm 7 | 37

An example

minimize cT x = −x1 − x2

subject to g1(x1,x2) = 0.15(x1 −8)2 +0.1(x2 −6)2 +0.025ex1x−2
2 −5 ≤ 0

g2(x1,x2) = 1/x1 +1/x2− x0.5
1 x0.5

2 +4 ≤ 0

2x1 −3x2 −2 ≤ 0

1 ≤ x1 ≤ 20, 1 ≤ x2 ≤ 20, x1 ∈�, x2 ∈�.

5 10 15 20

5

10

15

20

x1

x2

5 10 15 20

5

10

15

20

x1

x2



The ECP algorithm 7 | 37

An example

minimize cT x = −x1 − x2

subject to g1(x1,x2) = 0.15(x1 −8)2 +0.1(x2 −6)2 +0.025ex1x−2
2 −5 ≤ 0

g2(x1,x2) = 1/x1 +1/x2− x0.5
1 x0.5

2 +4 ≤ 0

2x1 −3x2 −2 ≤ 0

1 ≤ x1 ≤ 20, 1 ≤ x2 ≤ 20, x1 ∈�, x2 ∈�.

5 10 15 20

5

10

15

20

x1

x2

5 10 15 20

5

10

15

20

x1

x2



The ECP algorithm 8 | 37

I In each iteration k of the algorithm a MILP
problem is solved to obtain the solution point
(xk1 ,x

k
2 ).

. First iteration gives x1
1 = 20,x1

2 = 20.

. g1(x
1
1 ,x

1
2 ) = 30359.0, g2(x

1
1 ,x

1
2 ) = −15.9.

I A new cutting plane is generated for the
violated nonlinear constraint g1:

g1(x
1
1 ,x

1
2 )+∇g1(x

1
1 ,x

1
2 )

T (x − x1
1 ,x − x

1
2 ) ≤ 0



The ECP algorithm 8 | 37

I In each iteration k of the algorithm a MILP
problem is solved to obtain the solution point
(xk1 ,x

k
2 ).

. First iteration gives x1
1 = 20,x1

2 = 20.
. g1(x

1
1 ,x

1
2 ) = 30359.0, g2(x

1
1 ,x

1
2 ) = −15.9.

I A new cutting plane is generated for the
violated nonlinear constraint g1:

g1(x
1
1 ,x

1
2 )+∇g1(x

1
1 ,x

1
2 )

T (x − x1
1 ,x − x

1
2 ) ≤ 0



The ECP algorithm 8 | 37

I In each iteration k of the algorithm a MILP
problem is solved to obtain the solution point
(xk1 ,x

k
2 ).

. First iteration gives x1
1 = 20,x1

2 = 20.
. g1(x

1
1 ,x

1
2 ) = 30359.0, g2(x

1
1 ,x

1
2 ) = −15.9.

I A new cutting plane is generated for the
violated nonlinear constraint g1:

g1(x
1
1 ,x

1
2 )+∇g1(x

1
1 ,x

1
2 )

T (x − x1
1 ,x − x

1
2 ) ≤ 0



The ECP algorithm 9 | 37

I The nonlinear function g1(x1,x2)



The ECP algorithm 10 | 37

I The nonlinear function g1(x1,x2)
. and the cutting plane generated at x1 = 20,x2 = 20



The ECP algorithm 11 | 37

I To solve the problem with the ECP algorithm (×= 0.001) it takes
17 iterations (17 MILP problems solved to optimality).

I How can we improve performance?
Generate cutting planes on the boundary of the feasible set!



The ECP algorithm 11 | 37

I To solve the problem with the ECP algorithm (×= 0.001) it takes
17 iterations (17 MILP problems solved to optimality).

I How can we improve performance?

Generate cutting planes on the boundary of the feasible set!



The ECP algorithm 11 | 37

I To solve the problem with the ECP algorithm (×= 0.001) it takes
17 iterations (17 MILP problems solved to optimality).

I How can we improve performance?
Generate cutting planes on the boundary of the feasible set!



The ESH algorithm



The ESH algorithm 13 | 37

I A new interior point based algorithm for solving convex
MINLP problems to global optimality.

I Roots:
. The extended cutting plane algorithm 1995
. Kelley’s cutting plane algorithm 1960
. The supporting hyperplane method 1967

I Cutting planes are replaced with supporting hyperplanes
using a line search procedure to find the generation point.
An interior point is required for the line search.

I Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.



The ESH algorithm 13 | 37

I A new interior point based algorithm for solving convex
MINLP problems to global optimality.

I Roots:
. The extended cutting plane algorithm 1995

. Kelley’s cutting plane algorithm 1960

. The supporting hyperplane method 1967 1

I Cutting planes are replaced with supporting hyperplanes
using a line search procedure to find the generation point.
An interior point is required for the line search.

I Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.

1The supporting hyperplane method for unimodal programming, Veinott Jr. A. F., Operations Research, Vol.
15(1), pp. 147–152, 1967.



The ESH algorithm 13 | 37

I A new interior point based algorithm for solving convex
MINLP problems to global optimality.

I Roots:
. The extended cutting plane algorithm 1995
. Kelley’s cutting plane algorithm 1960

. The supporting hyperplane method 1967 1

I Cutting planes are replaced with supporting hyperplanes
using a line search procedure to find the generation point.
An interior point is required for the line search.

I Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.

1The supporting hyperplane method for unimodal programming, Veinott Jr. A. F., Operations Research, Vol.
15(1), pp. 147–152, 1967.



The ESH algorithm 13 | 37

I A new interior point based algorithm for solving convex
MINLP problems to global optimality.

I Roots:
. The extended cutting plane algorithm 1995
. Kelley’s cutting plane algorithm 1960
. The supporting hyperplane method 1967 1

I Cutting planes are replaced with supporting hyperplanes
using a line search procedure to find the generation point.
An interior point is required for the line search.

I Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.

1The supporting hyperplane method for unimodal programming, Veinott Jr. A. F., Operations Research, Vol.
15(1), pp. 147–152, 1967.



The ESH algorithm 13 | 37

I A new interior point based algorithm for solving convex
MINLP problems to global optimality.

I Roots:
. The extended cutting plane algorithm 1995
. Kelley’s cutting plane algorithm 1960
. The supporting hyperplane method 1967 1

I Cutting planes are replaced with supporting hyperplanes
using a line search procedure to find the generation point.
An interior point is required for the line search.

I Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.

1The supporting hyperplane method for unimodal programming, Veinott Jr. A. F., Operations Research, Vol.
15(1), pp. 147–152, 1967.



The ESH algorithm 13 | 37

I A new interior point based algorithm for solving convex
MINLP problems to global optimality.

I Roots:
. The extended cutting plane algorithm 1995
. Kelley’s cutting plane algorithm 1960
. The supporting hyperplane method 1967 1

I Cutting planes are replaced with supporting hyperplanes
using a line search procedure to find the generation point.
An interior point is required for the line search.

I Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.

1The supporting hyperplane method for unimodal programming, Veinott Jr. A. F., Operations Research, Vol.
15(1), pp. 147–152, 1967.



The ESH algorithm 14 | 37

The MINLP problem

I The algorithm finds the optimal solution x∗ to the following
convex MINLP problem:

x∗ = argmin
x∈C∩L∩Y

cTx (P)

where x = [x1,x2, . . . ,xN ]T belongs to the compact set

X =
{
x
∣∣∣x i ≤ xi ≤ x i , i = 1, . . . ,N

}
⊂�

n ,

the feasible region is defined by C ∩ L ∩Y ,

C = {x |gm(x) ≤ 0, m = 1, . . . ,M , x ∈ X } ,
L = {x |Ax ≤ a , Bx = b , x ∈ X } ,
Y = {x |xi ∈�, i ∈ I�, x ∈ X } ,

and C is a convex set.



The ESH algorithm 15 | 37

Steps in the ESH algorithm

NLP: Obtain a feasible, relaxed interior point (a point in the set
C ) by solving a NLP problem.

LP1: Solve simple LP problems (initially in X ) to add additional
supporting hyperplanes.

LP2: Solve simple LP problems (including the constraints in L )
to add additional supporting hyperplanes.

MILP: Solve MILP problems to find the optimal solution to (P).



The ESH algorithm 15 | 37

Steps in the ESH algorithm

NLP: Obtain a feasible, relaxed interior point (a point in the set
C ) by solving a NLP problem.

LP1: Solve simple LP problems (initially in X ) to add additional
supporting hyperplanes.

LP2: Solve simple LP problems (including the constraints in L )
to add additional supporting hyperplanes.

MILP: Solve MILP problems to find the optimal solution to (P).



The ESH algorithm 15 | 37

Steps in the ESH algorithm

NLP: Obtain a feasible, relaxed interior point (a point in the set
C ) by solving a NLP problem.

LP1: Solve simple LP problems (initially in X ) to add additional
supporting hyperplanes.

LP2: Solve simple LP problems (including the constraints in L )
to add additional supporting hyperplanes.

MILP: Solve MILP problems to find the optimal solution to (P).



The ESH algorithm 15 | 37

Steps in the ESH algorithm

NLP: Obtain a feasible, relaxed interior point (a point in the set
C ) by solving a NLP problem.

LP1: Solve simple LP problems (initially in X ) to add additional
supporting hyperplanes.

LP2: Solve simple LP problems (including the constraints in L )
to add additional supporting hyperplanes.

MILP: Solve MILP problems to find the optimal solution to (P).



The ESH algorithm 16 | 37

NLP step

I If an interior point is not given, obtain a feasible, relaxed
interior point (satisfying all the nonlinear constraints in C )
by solving a NLP problem.

5 10 15 20

5

10

15

20



The ESH algorithm 17 | 37

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 17 | 37

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 17 | 37

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 17 | 37

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 17 | 37

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 17 | 37

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 17 | 37

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 17 | 37

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 17 | 37

LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .

5 10 15 20

5

10

15

20



The ESH algorithm 18 | 37

LP2 step (optional)

I Continue with a corresponding procedure as in LP1 but
now also including the linear constraints in L in the
original problem.

5 10 15 20

5

10

15

20



The ESH algorithm 18 | 37

LP2 step (optional)

I Continue with a corresponding procedure as in LP1 but
now also including the linear constraints in L in the
original problem.

5 10 15 20

5

10

15

20



The ESH algorithm 18 | 37

LP2 step (optional)

I Continue with a corresponding procedure as in LP1 but
now also including the linear constraints in L in the
original problem.

5 10 15 20

5

10

15

20



The ESH algorithm 19 | 37

MILP step

I Finally include the integer requirements and solve MILP
problems using a corresponding procedure to find the
optimal solution to (P).

5 10 15 20

5

10

15

20



The ESH algorithm 19 | 37

MILP step

I Finally include the integer requirements and solve MILP
problems using a corresponding procedure to find the
optimal solution to (P).

5 10 15 20

5

10

15

20



The ESH algorithm 19 | 37

MILP step

I Finally include the integer requirements and solve MILP
problems using a corresponding procedure to find the
optimal solution to (P).

5 10 15 20

5

10

15

20



The ESH algorithm 19 | 37

MILP step

I Finally include the integer requirements and solve MILP
problems using a corresponding procedure to find the
optimal solution to (P).

5 10 15 20

5

10

15

20



The ESH algorithm 20 | 37

NLP step

I A point in C is required as an endpoint for the line searches to
be conducted in the LP1-, LP2- and MILP-steps.

I Assuming that (P) has a solution, the internal point can be
obtained from the following NLP problem:

x̃NLP = argmin
x∈X

F(x), (P-NLP)

where F(x) := max
m=1,...,M

{gm(x)}.

I F is convex/quasiconvex since it is the maximum of
convex/quasiconvex functions.

I (P-NLP) may be nonsmooth (if M > 1) even if gm is smooth.

I The point x̃NLP need not be optimal but then fulfill F(x̃NLP) < 0.

I The NLP step can also be formulated as a smooth NLP problem
if all functions gm are smooth and convex.



The ESH algorithm 20 | 37

NLP step

I A point in C is required as an endpoint for the line searches to
be conducted in the LP1-, LP2- and MILP-steps.

I Assuming that (P) has a solution, the internal point can be
obtained from the following NLP problem:

x̃NLP = argmin
x∈X

F(x), (P-NLP)

where F(x) := max
m=1,...,M

{gm(x)}.

I F is convex/quasiconvex since it is the maximum of
convex/quasiconvex functions.

I (P-NLP) may be nonsmooth (if M > 1) even if gm is smooth.

I The point x̃NLP need not be optimal but then fulfill F(x̃NLP) < 0.

I The NLP step can also be formulated as a smooth NLP problem
if all functions gm are smooth and convex.



The ESH algorithm 20 | 37

NLP step

I A point in C is required as an endpoint for the line searches to
be conducted in the LP1-, LP2- and MILP-steps.

I Assuming that (P) has a solution, the internal point can be
obtained from the following NLP problem:

x̃NLP = argmin
x∈X

F(x), (P-NLP)

where F(x) := max
m=1,...,M

{gm(x)}.

I F is convex/quasiconvex since it is the maximum of
convex/quasiconvex functions.

I (P-NLP) may be nonsmooth (if M > 1) even if gm is smooth.

I The point x̃NLP need not be optimal but then fulfill F(x̃NLP) < 0.

I The NLP step can also be formulated as a smooth NLP problem
if all functions gm are smooth and convex.



The ESH algorithm 20 | 37

NLP step

I A point in C is required as an endpoint for the line searches to
be conducted in the LP1-, LP2- and MILP-steps.

I Assuming that (P) has a solution, the internal point can be
obtained from the following NLP problem:

x̃NLP = argmin
x∈X

F(x), (P-NLP)

where F(x) := max
m=1,...,M

{gm(x)}.

I F is convex/quasiconvex since it is the maximum of
convex/quasiconvex functions.

I (P-NLP) may be nonsmooth (if M > 1) even if gm is smooth.

I The point x̃NLP need not be optimal but then fulfill F(x̃NLP) < 0.

I The NLP step can also be formulated as a smooth NLP problem
if all functions gm are smooth and convex.



The ESH algorithm 20 | 37

NLP step

I A point in C is required as an endpoint for the line searches to
be conducted in the LP1-, LP2- and MILP-steps.

I Assuming that (P) has a solution, the internal point can be
obtained from the following NLP problem:

x̃NLP = argmin
x∈X

F(x), (P-NLP)

where F(x) := max
m=1,...,M

{gm(x)}.

I F is convex/quasiconvex since it is the maximum of
convex/quasiconvex functions.

I (P-NLP) may be nonsmooth (if M > 1) even if gm is smooth.

I The point x̃NLP need not be optimal but then fulfill F(x̃NLP) < 0.

I The NLP step can also be formulated as a smooth NLP problem
if all functions gm are smooth and convex.



The ESH algorithm 20 | 37

NLP step

I A point in C is required as an endpoint for the line searches to
be conducted in the LP1-, LP2- and MILP-steps.

I Assuming that (P) has a solution, the internal point can be
obtained from the following NLP problem:

x̃NLP = argmin
x∈X

F(x), (P-NLP)

where F(x) := max
m=1,...,M

{gm(x)}.

I F is convex/quasiconvex since it is the maximum of
convex/quasiconvex functions.

I (P-NLP) may be nonsmooth (if M > 1) even if gm is smooth.

I The point x̃NLP need not be optimal but then fulfill F(x̃NLP) < 0.

I The NLP step can also be formulated as a smooth NLP problem
if all functions gm are smooth and convex.



The ESH algorithm 21 | 37

LP1 step

I Starting from k = 1, Ò0 = X , the problem

x̃kLP = argmin
Òk−1

cTx (P-LP1)

is solved, and the point xk is obtained by a line search for
F(xk ) = 0 between the internal point x̃NLP and the solution
point to (P-LP1) x̃kLP:

xk = Ýx̃NLP +(1−Ý)x̃kLP, Ý ∈ [0,1].

Supporting hyperplanes (SHs)

lk := F(xk )+ àF (x
k )T (x − xk ) ≤ 0

are generated and added to Òk .
àF (xk )T is a gradient or subgradient of F at xk .

I Repeted untill F(x̃kLP) < ×LP1 or a maximum number of SHs
have been generated.



The ESH algorithm 21 | 37

LP1 step

I Starting from k = 1, Ò0 = X , the problem

x̃kLP = argmin
Òk−1

cTx (P-LP1)

is solved, and the point xk is obtained by a line search for
F(xk ) = 0 between the internal point x̃NLP and the solution
point to (P-LP1) x̃kLP:

xk = Ýx̃NLP +(1−Ý)x̃kLP, Ý ∈ [0,1].

Supporting hyperplanes (SHs)

lk := F(xk )+ àF (x
k )T (x − xk ) ≤ 0

are generated and added to Òk .
àF (xk )T is a gradient or subgradient of F at xk .

I Repeted untill F(x̃kLP) < ×LP1 or a maximum number of SHs
have been generated.



The ESH algorithm 21 | 37

LP1 step

I Starting from k = 1, Ò0 = X , the problem

x̃kLP = argmin
Òk−1

cTx (P-LP1)

is solved, and the point xk is obtained by a line search for
F(xk ) = 0 between the internal point x̃NLP and the solution
point to (P-LP1) x̃kLP:

xk = Ýx̃NLP +(1−Ý)x̃kLP, Ý ∈ [0,1].

Supporting hyperplanes (SHs)

lk := F(xk )+ àF (x
k )T (x − xk ) ≤ 0

are generated and added to Òk .
àF (xk )T is a gradient or subgradient of F at xk .

I Repeted untill F(x̃kLP) < ×LP1 or a maximum number of SHs
have been generated.



The ESH algorithm 22 | 37

LP2 step

I This step is otherwise identical to LP1, with the exception
that the linear constraints in L are now also included, i.e.,

x̃kLP = argmin
Òk−1∩L

cTx (P-LP2)

I (P-LP2) is repeatedly solved until F(x̃kLP) < ×LP2 or a
maximum number of SHs have additionally been
generated.



The ESH algorithm 22 | 37

LP2 step

I This step is otherwise identical to LP1, with the exception
that the linear constraints in L are now also included, i.e.,

x̃kLP = argmin
Òk−1∩L

cTx (P-LP2)

I (P-LP2) is repeatedly solved until F(x̃kLP) < ×LP2 or a
maximum number of SHs have additionally been
generated.



The ESH algorithm 23 | 37

MILP step

I Finally, in order to also fulfill the integer requirements of
problem (P), a MILP step is performed.

I This step is otherwise identical to LP2, with the exception
that the integer requirements in Y are now additionally
considered, i.e.,

x̃kMILP = argmin
Òk−1∩L∩Y

cTx . (P-MILP)

I (P-MILP) is repeatedly solved until F(x̃kMILP) < ×MILP.

I Intermediate (P-MILP) problems do not need to be solved to
optimality, but in order to guarantee an optimal solution of
(P), the final MILP solution must be optimal.



The ESH algorithm 23 | 37

MILP step

I Finally, in order to also fulfill the integer requirements of
problem (P), a MILP step is performed.

I This step is otherwise identical to LP2, with the exception
that the integer requirements in Y are now additionally
considered, i.e.,

x̃kMILP = argmin
Òk−1∩L∩Y

cTx . (P-MILP)

I (P-MILP) is repeatedly solved until F(x̃kMILP) < ×MILP.

I Intermediate (P-MILP) problems do not need to be solved to
optimality, but in order to guarantee an optimal solution of
(P), the final MILP solution must be optimal.



The ESH algorithm 23 | 37

MILP step

I Finally, in order to also fulfill the integer requirements of
problem (P), a MILP step is performed.

I This step is otherwise identical to LP2, with the exception
that the integer requirements in Y are now additionally
considered, i.e.,

x̃kMILP = argmin
Òk−1∩L∩Y

cTx . (P-MILP)

I (P-MILP) is repeatedly solved until F(x̃kMILP) < ×MILP.

I Intermediate (P-MILP) problems do not need to be solved to
optimality, but in order to guarantee an optimal solution of
(P), the final MILP solution must be optimal.



The ESH algorithm 23 | 37

MILP step

I Finally, in order to also fulfill the integer requirements of
problem (P), a MILP step is performed.

I This step is otherwise identical to LP2, with the exception
that the integer requirements in Y are now additionally
considered, i.e.,

x̃kMILP = argmin
Òk−1∩L∩Y

cTx . (P-MILP)

I (P-MILP) is repeatedly solved until F(x̃kMILP) < ×MILP.

I Intermediate (P-MILP) problems do not need to be solved to
optimality, but in order to guarantee an optimal solution of
(P), the final MILP solution must be optimal.



The ESH algorithm 24 | 37

Now, consider the same example as earlier

minimize cT x = −x1 − x2

subject to 0.15(x1 −8)2 +0.1(x2 −6)2 +0.025ex1x−2
2 −5 ≤ 0

1/x1 +1/x2− x0.5
1 x0.5

2 +4 ≤ 0

2x1 −3x2 −2 ≤ 0

1 ≤ x1 ≤ 20, 1 ≤ x2 ≤ 20, x1 ∈�, x2 ∈�.

5 10 15 20

5

10

15

20

x1

x2

5 10 15 20

5

10

15

20

x1

x2



The ESH algorithm 25 | 37

NLP step – find an interior point

x̃NLP = argmin
(x1 ,x2)∈X

F(x1,x2),

where F(x1,x2) := max{g1(x1,x2), g2(x1,x2)}.

I The problem can be found using a
suitable NLP solver.

I Not required to be the optimal point

I The optimal point here is
(7.45,8.54)

5 10 15 20

5

10

15

20



The ESH algorithm 26 | 37

LP1-step – Iteration 1

I Assume initially that Ò0 = X .

I k = 1, solve LP in Ò,

x̃kLP = argmin
Òk−1

cTx .

5 10 15 20

5

10

15

20

I Do line search
xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.



The ESH algorithm 26 | 37

LP1-step – Iteration 1

I Assume initially that Ò0 = X .

I k = 1, solve LP in Ò,

x̃kLP = argmin
Òk−1

cTx .

5 10 15 20

5

10

15

20

I Do line search
xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.



The ESH algorithm 26 | 37

LP1-step – Iteration 1

I Assume initially that Ò0 = X .

I k = 1, solve LP in Ò,

x̃kLP = argmin
Òk−1

cTx .

5 10 15 20

5

10

15

20

I Do line search
xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.



The ESH algorithm 26 | 37

LP1-step – Iteration 1

I Assume initially that Ò0 = X .

I k = 1, solve LP in Ò,

x̃kLP = argmin
Òk−1

cTx .

5 10 15 20

5

10

15

20

I Do line search
xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.



The ESH algorithm 27 | 37

LP1-step – Iteration 2

I Ò1 = {x |l1(x) ≤ 0, x ∈ X }.

l1(x) = 3.26x1 +0.313x2 −33.9

I k = 2, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .

5 10 15 20

5

10

15

20

I Do line search xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.



The ESH algorithm 27 | 37

LP1-step – Iteration 2

I Ò1 = {x |l1(x) ≤ 0, x ∈ X }.

l1(x) = 3.26x1 +0.313x2 −33.9

I k = 2, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .

5 10 15 20

5

10

15

20

I Do line search xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.



The ESH algorithm 27 | 37

LP1-step – Iteration 2

I Ò1 = {x |l1(x) ≤ 0, x ∈ X }.

l1(x) = 3.26x1 +0.313x2 −33.9

I k = 2, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .

5 10 15 20

5

10

15

20

I Do line search xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.



The ESH algorithm 27 | 37

LP1-step – Iteration 2

I Ò1 = {x |l1(x) ≤ 0, x ∈ X }.

l1(x) = 3.26x1 +0.313x2 −33.9

I k = 2, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .

5 10 15 20

5

10

15

20

I Do line search xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.



The ESH algorithm 28 | 37

LP1-step – Iteration 3

I Ò2 = {x |lj (x) ≤ 0, j ∈ {1,2}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

5 10 15 20

5

10

15

20

I k = 3, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP1-step since F(x̃kLP) < ×LP1.



The ESH algorithm 28 | 37

LP1-step – Iteration 3

I Ò2 = {x |lj (x) ≤ 0, j ∈ {1,2}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

5 10 15 20

5

10

15

20

I k = 3, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP1-step since F(x̃kLP) < ×LP1.



The ESH algorithm 28 | 37

LP1-step – Iteration 3

I Ò2 = {x |lj (x) ≤ 0, j ∈ {1,2}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

5 10 15 20

5

10

15

20

I k = 3, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP1-step since F(x̃kLP) < ×LP1.



The ESH algorithm 28 | 37

LP1-step – Iteration 3

I Ò2 = {x |lj (x) ≤ 0, j ∈ {1,2}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

5 10 15 20

5

10

15

20

I k = 3, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP1-step since F(x̃kLP) < ×LP1.



The ESH algorithm 29 | 37

LP2-step – Iteration 4

I Ò3 = {x |lj (x) ≤ 0, j ∈ {1,2,3}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

l3(x) = 1.66x1 +0.951x2 −26.2
5 10 15 20

5

10

15

20

I k = 4, solve LP now in Ò∩ L ,

x̃kLP = argminÒk−1∩L cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP2-step since F(x̃kLP) < ×LP2.



The ESH algorithm 29 | 37

LP2-step – Iteration 4

I Ò3 = {x |lj (x) ≤ 0, j ∈ {1,2,3}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

l3(x) = 1.66x1 +0.951x2 −26.2
5 10 15 20

5

10

15

20

I k = 4, solve LP now in Ò∩ L ,

x̃kLP = argminÒk−1∩L cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP2-step since F(x̃kLP) < ×LP2.



The ESH algorithm 29 | 37

LP2-step – Iteration 4

I Ò3 = {x |lj (x) ≤ 0, j ∈ {1,2,3}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

l3(x) = 1.66x1 +0.951x2 −26.2
5 10 15 20

5

10

15

20

I k = 4, solve LP now in Ò∩ L ,

x̃kLP = argminÒk−1∩L cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP2-step since F(x̃kLP) < ×LP2.



The ESH algorithm 29 | 37

LP2-step – Iteration 4

I Ò3 = {x |lj (x) ≤ 0, j ∈ {1,2,3}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

l3(x) = 1.66x1 +0.951x2 −26.2
5 10 15 20

5

10

15

20

I k = 4, solve LP now in Ò∩ L ,

x̃kLP = argminÒk−1∩L cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP2-step since F(x̃kLP) < ×LP2.



The ESH algorithm 30 | 37

MILP step – Iterations 5 and 6

5 10 15 20

5

10

15

20

MILP k = 5

5 10 15 20

5

10

15

20

MILP k = 6

I In this step the integer requirements in Y are also
considered, i.e., initially k = 5, Ò=Òk−1 ∩ L ∩Y .

I The MILP steps are required to guarantee an
integer-feasible solution.



The ESH algorithm 31 | 37

Solution and comparisons to other solvers

I Solving the MINLP problem with the supporting hyperplane
algorithm gives the following solution

Type Iteration Obj. funct. x1 x2 F(x1,x2)
LP1 1 −40.0000 20.0000 20.0000 30 359
LP1 2 −28.4720 8.47199 20.0000 14.9321
LP1 3 −21.6378 9.19722 12.4406 0.957382
LP2 4 −21.1639 8.56022 12.6037 0.229455
MILP 5 −20.9065 8.90647 12 0.00442134
MILP 6 −20.9036 8.90362 12 4.22619 ·10−6

I Solution times compared to some other MINLP solvers:

Solver Subproblems solved Time (s) Implementation
ESH 1 NLP + 4 LP + 2 MILP 0.04 Early prototype
ECP 21 MILP (10 OPT) + 1 NLP 1.4 GAMS 24.2 + CPLEX
DICOPT 10 NLP + 10 MILP 1.5 GAMS 24.2 + CONOPT + CPLEX



The ESH algorithm 31 | 37

Solution and comparisons to other solvers

I Solving the MINLP problem with the supporting hyperplane
algorithm gives the following solution

Type Iteration Obj. funct. x1 x2 F(x1,x2)
LP1 1 −40.0000 20.0000 20.0000 30 359
LP1 2 −28.4720 8.47199 20.0000 14.9321
LP1 3 −21.6378 9.19722 12.4406 0.957382
LP2 4 −21.1639 8.56022 12.6037 0.229455
MILP 5 −20.9065 8.90647 12 0.00442134
MILP 6 −20.9036 8.90362 12 4.22619 ·10−6

I Solution times compared to some other MINLP solvers:

Solver Subproblems solved Time (s) Implementation
ESH 1 NLP + 4 LP + 2 MILP 0.04 Early prototype
ECP 21 MILP (10 OPT) + 1 NLP 1.4 GAMS 24.2 + CPLEX
DICOPT 10 NLP + 10 MILP 1.5 GAMS 24.2 + CONOPT + CPLEX



The ESH algorithm 32 | 37

Solver comparison

I The test problems are taken from MINLPlib2, which is a
collection Mixed Integer Nonlinear Programming models.

Solver fo7-ar4-1 fo9-ar3-1 jit1 m7-ar5-1

ESH 32.51 169.15 0.12 1.06

ECP 79.45 612.68 0.25 4.84
ANTIGONE 33.58 ∗ 1.36 1.61

BARON ∗ ∗ 0.1 166.62
DICOPT # # # #

SBB # # 0.03 #
SCIP 34.12 393.22 0.01 13.15

Variables 112 180 25 112
Binaries 0 0 0 0
Integers 42 72 4 42

Type MINLP MINLP MINLP MINLP



The ESH algorithm 33 | 37

Solver comparison

Solver batchs101006m enpro56pb o7 rsyn0805m04h rsyn0830m04h sssd25-08

ESH 17.89 1.34 461.75 6.64 111.63 58.71

ECP 17.8 2.37 ∗ 4.46 25.02 ∗
ANTIGONE 15.68 0.75 ∗ ∗ ∗ 668.71

BARON 161.81 7.75 ∗ 66.87 ∗ ∗
DICOPT 1.75 0.34 # 2.31 4.57 ∗

SBB # # # 10.8 171.91 #
SCIP 11.68 1.48 ∗ 13.63 ∗ ∗

Variables 278 127 114 1,400 1,956 256
Binaries 129 73 42 296 416 224
Integers 0 0 0 0 0 0

Type MBNLP MBNLP MBNLP MBNLP MBNLP MBNLP



The ESH algorithm 34 | 37

Solver comparison

Solver alan fac3 netmod-dol2 netmod-kar1 slay05h

ESH 0.01 0.76 94.19 21.87 38.49
ECP 0.28 0.22 467.35 82.54 84.46

ANTIGONE 0.33 92.75 113.9 157.01 0.61
BARON 0.14 1.31 ∗ # 1,067.14
DICOPT 0.14 0.53 # # 0.19

SBB 0.01 0.20 # 23.26 6.13
SCIP 0.01 0.23 43.57 4.04 1.24

Variables 8 66 1,998 456 230
Binaries 4 12 462 136 40
Integers 0 0 0 0 0

Type MBQP MBQP MBQP MBQP MBQP



The ESH algorithm 35 | 37

Solver comparison

Solver du-opt ex4

ESH 33.3 1.01
ECP 22.98 0.75

ANTIGONE ∗ 0.22

BARON 13.74 2.62
DICOPT # 0.44

SBB 0.33 1.06
SCIP 0.7 0.45

Variables 20 36
Binaries 0 25
Integers 13 0

Type MIQP MBQCQP



The ESH algorithm 36 | 37

Future work

Implementations of the algorithm

I Mathematica / Wolfram Language. Early prototype
“available”.

I COIN-OR: Utilize the Optimization Services and Open
Solver Interface APIs.

I GAMS

Development of the algorithm

I Pseudoconvex constraints and objective functions.

I Selection (update) strategies of the interior point.

I Strategies for the LP1/LP2 steps.



The ESH algorithm 36 | 37

Future work

Implementations of the algorithm

I Mathematica / Wolfram Language. Early prototype
“available”.

I COIN-OR: Utilize the Optimization Services and Open
Solver Interface APIs.

I GAMS

Development of the algorithm

I Pseudoconvex constraints and objective functions.

I Selection (update) strategies of the interior point.

I Strategies for the LP1/LP2 steps.



The ESH algorithm 37 | 37

Thank you!


	The ECP algorithm
	The ESH algorithm

