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Contents of the talk

I The extended cutting plane (ECP) algorithm is briefly
introduced.

I The extended supporting hyperplane (ESH) algorithm, a
new algorithm for solving convex MINLP problems to
global optimality, is introduced

. Cutting planes are replaced with supporting hyperplanes
using a line search procedure.

. Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.
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The extended cutting plane algorithm

I The ECP algorithm is a solver for generally convex
mixed-integer nonlinear programming (MINLP) problems.

I Solves MILP relaxations of the MINLP problem where the
nonlinear constraints are approximated using cutting
planes.

I Implemented, e.g., in the AlphaECP solver in GAMS and
available on the NEOS server.
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The extended cutting plane algorithm

I First presented in internal report in 1992

I Inspired by Kelley’s cutting plane method
. Convex NLP problems Kelley Jr. J., The cutting-plane

method for solving convex programs, Journal of the
SIAM, vol. 8(4), pp. 703–712, 1960.

I Published in Computers & Chemical Engineering in 1995
. Westerlund T. and Pettersson F., An extended cutting

plane method for solving convex MINLP problems,
Computers & Chemical Engineering 19, pp. 131–136,
1995.
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Extensions

Pseudoconvex constraints Westerlund T., Skrifvars H.,
Harjunkoski I. and Pörn R. An extended cutting plane method
for solving a class of non-convex MINLP problems.
Computers and Chemical Engineering, 22, 357–365, 1998.

Pseudoconvex objective function and constraints Westerlund
T. and Pörn R. Solving Pseudo-Convex Mixed Integer
Optimization Problems by Cutting Plane techniques.
Optimization and Engineering, 3, 253–280, 2002.

Nonsmooth constraints Eronen V.-P., Mäkelä M. M. and
Westerlund T. On the generalization of ECP and OA methods
to nonsmooth convex MINLP problems, Taylor and Francis,
2014.
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An example

minimize cT x = −x1 − x2

subject to g1(x1,x2) = 0.15(x1 −8)2 +0.1(x2 −6)2 +0.025ex1x−2
2 −5 ≤ 0

g2(x1,x2) = 1/x1 +1/x2− x0.5
1 x0.5

2 +4 ≤ 0

2x1 −3x2 −2 ≤ 0

1 ≤ x1 ≤ 20, 1 ≤ x2 ≤ 20, x1 ∈�, x2 ∈�.
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I In each iteration k of the algorithm a MILP
problem is solved to obtain the solution point
(xk1 ,x

k
2 ).

. First iteration gives x1
1 = 20,x1

2 = 20.

. g1(x
1
1 ,x

1
2 ) = 30359.0, g2(x

1
1 ,x

1
2 ) = −15.9.

I A new cutting plane is generated for the
violated nonlinear constraint g1:

g1(x
1
1 ,x

1
2 )+∇g1(x

1
1 ,x

1
2 )

T (x − x1
1 ,x − x

1
2 ) ≤ 0
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I The nonlinear function g1(x1,x2)
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I The nonlinear function g1(x1,x2)
. and the cutting plane generated at x1 = 20,x2 = 20
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I To solve the problem with the ECP algorithm (×= 0.001) it takes
17 iterations (17 MILP problems solved to optimality).

I How can we improve performance?
Generate cutting planes on the boundary of the feasible set!
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I A new interior point based algorithm for solving convex
MINLP problems to global optimality.

I Roots:
. The extended cutting plane algorithm 1995
. Kelley’s cutting plane algorithm 1960
. The supporting hyperplane method 1967

I Cutting planes are replaced with supporting hyperplanes
using a line search procedure to find the generation point.
An interior point is required for the line search.

I Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.
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The MINLP problem

I The algorithm finds the optimal solution x∗ to the following
convex MINLP problem:

x∗ = argmin
x∈C∩L∩Y

cTx (P)

where x = [x1,x2, . . . ,xN ]T belongs to the compact set

X =
{
x
∣∣∣x i ≤ xi ≤ x i , i = 1, . . . ,N

}
⊂�

n ,

the feasible region is defined by C ∩ L ∩Y ,

C = {x |gm(x) ≤ 0, m = 1, . . . ,M , x ∈ X } ,
L = {x |Ax ≤ a , Bx = b , x ∈ X } ,
Y = {x |xi ∈�, i ∈ I�, x ∈ X } ,

and C is a convex set.
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Steps in the ESH algorithm

NLP: Obtain a feasible, relaxed interior point (a point in the set
C ) by solving a NLP problem.

LP1: Solve simple LP problems (initially in X ) to add additional
supporting hyperplanes.

LP2: Solve simple LP problems (including the constraints in L )
to add additional supporting hyperplanes.

MILP: Solve MILP problems to find the optimal solution to (P).
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NLP step

I If an interior point is not given, obtain a feasible, relaxed
interior point (satisfying all the nonlinear constraints in C )
by solving a NLP problem.
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LP1 step (optional)

I Solve simple LP problems (initially in X ) and conduct a line
search procedure to obtain supporting hyperplanes giving
a first linear relaxation of the convex set C .
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LP2 step (optional)

I Continue with a corresponding procedure as in LP1 but
now also including the linear constraints in L in the
original problem.
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MILP step

I Finally include the integer requirements and solve MILP
problems using a corresponding procedure to find the
optimal solution to (P).
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NLP step

I A point in C is required as an endpoint for the line searches to
be conducted in the LP1-, LP2- and MILP-steps.

I Assuming that (P) has a solution, the internal point can be
obtained from the following NLP problem:

x̃NLP = argmin
x∈X

F(x), (P-NLP)

where F(x) := max
m=1,...,M

{gm(x)}.

I F is convex/quasiconvex since it is the maximum of
convex/quasiconvex functions.

I (P-NLP) may be nonsmooth (if M > 1) even if gm is smooth.

I The point x̃NLP need not be optimal but then fulfill F(x̃NLP) < 0.

I The NLP step can also be formulated as a smooth NLP problem
if all functions gm are smooth and convex.
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LP1 step

I Starting from k = 1, Ò0 = X , the problem

x̃kLP = argmin
Òk−1

cTx (P-LP1)

is solved, and the point xk is obtained by a line search for
F(xk ) = 0 between the internal point x̃NLP and the solution
point to (P-LP1) x̃kLP:

xk = Ýx̃NLP +(1−Ý)x̃kLP, Ý ∈ [0,1].

Supporting hyperplanes (SHs)

lk := F(xk )+ àF (x
k )T (x − xk ) ≤ 0

are generated and added to Òk .
àF (xk )T is a gradient or subgradient of F at xk .

I Repeted untill F(x̃kLP) < ×LP1 or a maximum number of SHs
have been generated.
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LP2 step

I This step is otherwise identical to LP1, with the exception
that the linear constraints in L are now also included, i.e.,

x̃kLP = argmin
Òk−1∩L

cTx (P-LP2)

I (P-LP2) is repeatedly solved until F(x̃kLP) < ×LP2 or a
maximum number of SHs have additionally been
generated.
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MILP step

I Finally, in order to also fulfill the integer requirements of
problem (P), a MILP step is performed.

I This step is otherwise identical to LP2, with the exception
that the integer requirements in Y are now additionally
considered, i.e.,

x̃kMILP = argmin
Òk−1∩L∩Y

cTx . (P-MILP)

I (P-MILP) is repeatedly solved until F(x̃kMILP) < ×MILP.

I Intermediate (P-MILP) problems do not need to be solved to
optimality, but in order to guarantee an optimal solution of
(P), the final MILP solution must be optimal.
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Now, consider the same example as earlier

minimize cT x = −x1 − x2

subject to 0.15(x1 −8)2 +0.1(x2 −6)2 +0.025ex1x−2
2 −5 ≤ 0

1/x1 +1/x2− x0.5
1 x0.5

2 +4 ≤ 0

2x1 −3x2 −2 ≤ 0

1 ≤ x1 ≤ 20, 1 ≤ x2 ≤ 20, x1 ∈�, x2 ∈�.
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NLP step – find an interior point

x̃NLP = argmin
(x1 ,x2)∈X

F(x1,x2),

where F(x1,x2) := max{g1(x1,x2), g2(x1,x2)}.

I The problem can be found using a
suitable NLP solver.

I Not required to be the optimal point

I The optimal point here is
(7.45,8.54)
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LP1-step – Iteration 1

I Assume initially that Ò0 = X .

I k = 1, solve LP in Ò,

x̃kLP = argmin
Òk−1

cTx .
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I Do line search
xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.
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LP1-step – Iteration 2

I Ò1 = {x |l1(x) ≤ 0, x ∈ X }.

l1(x) = 3.26x1 +0.313x2 −33.9

I k = 2, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .
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I Do line search xk = Ýx̃NLP +(1−Ý)x̃kLP.

I Generate supporting hyperplane in xk and add to Ò.
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LP1-step – Iteration 3

I Ò2 = {x |lj (x) ≤ 0, j ∈ {1,2}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2
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I k = 3, solve LP in Ò,

x̃kLP = argminÒk−1
cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP1-step since F(x̃kLP) < ×LP1.
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LP2-step – Iteration 4

I Ò3 = {x |lj (x) ≤ 0, j ∈ {1,2,3}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

l3(x) = 1.66x1 +0.951x2 −26.2
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I k = 4, solve LP now in Ò∩ L ,

x̃kLP = argminÒk−1∩L cTx .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP2-step since F(x̃kLP) < ×LP2.
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MILP step – Iterations 5 and 6
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MILP k = 5
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MILP k = 6

I In this step the integer requirements in Y are also
considered, i.e., initially k = 5, Ò=Òk−1 ∩ L ∩Y .

I The MILP steps are required to guarantee an
integer-feasible solution.
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Solution and comparisons to other solvers

I Solving the MINLP problem with the supporting hyperplane
algorithm gives the following solution

Type Iteration Obj. funct. x1 x2 F(x1,x2)
LP1 1 −40.0000 20.0000 20.0000 30 359
LP1 2 −28.4720 8.47199 20.0000 14.9321
LP1 3 −21.6378 9.19722 12.4406 0.957382
LP2 4 −21.1639 8.56022 12.6037 0.229455
MILP 5 −20.9065 8.90647 12 0.00442134
MILP 6 −20.9036 8.90362 12 4.22619 ·10−6

I Solution times compared to some other MINLP solvers:

Solver Subproblems solved Time (s) Implementation
ESH 1 NLP + 4 LP + 2 MILP 0.04 Early prototype
ECP 21 MILP (10 OPT) + 1 NLP 1.4 GAMS 24.2 + CPLEX
DICOPT 10 NLP + 10 MILP 1.5 GAMS 24.2 + CONOPT + CPLEX
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Solver comparison

I The test problems are taken from MINLPlib2, which is a
collection Mixed Integer Nonlinear Programming models.

Solver fo7-ar4-1 fo9-ar3-1 jit1 m7-ar5-1

ESH 32.51 169.15 0.12 1.06

ECP 79.45 612.68 0.25 4.84
ANTIGONE 33.58 ∗ 1.36 1.61

BARON ∗ ∗ 0.1 166.62
DICOPT # # # #

SBB # # 0.03 #
SCIP 34.12 393.22 0.01 13.15

Variables 112 180 25 112
Binaries 0 0 0 0
Integers 42 72 4 42

Type MINLP MINLP MINLP MINLP
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Solver comparison

Solver batchs101006m enpro56pb o7 rsyn0805m04h rsyn0830m04h sssd25-08

ESH 17.89 1.34 461.75 6.64 111.63 58.71

ECP 17.8 2.37 ∗ 4.46 25.02 ∗
ANTIGONE 15.68 0.75 ∗ ∗ ∗ 668.71

BARON 161.81 7.75 ∗ 66.87 ∗ ∗
DICOPT 1.75 0.34 # 2.31 4.57 ∗

SBB # # # 10.8 171.91 #
SCIP 11.68 1.48 ∗ 13.63 ∗ ∗

Variables 278 127 114 1,400 1,956 256
Binaries 129 73 42 296 416 224
Integers 0 0 0 0 0 0

Type MBNLP MBNLP MBNLP MBNLP MBNLP MBNLP
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Solver comparison

Solver alan fac3 netmod-dol2 netmod-kar1 slay05h

ESH 0.01 0.76 94.19 21.87 38.49
ECP 0.28 0.22 467.35 82.54 84.46

ANTIGONE 0.33 92.75 113.9 157.01 0.61
BARON 0.14 1.31 ∗ # 1,067.14
DICOPT 0.14 0.53 # # 0.19

SBB 0.01 0.20 # 23.26 6.13
SCIP 0.01 0.23 43.57 4.04 1.24

Variables 8 66 1,998 456 230
Binaries 4 12 462 136 40
Integers 0 0 0 0 0

Type MBQP MBQP MBQP MBQP MBQP
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Solver comparison

Solver du-opt ex4

ESH 33.3 1.01
ECP 22.98 0.75

ANTIGONE ∗ 0.22

BARON 13.74 2.62
DICOPT # 0.44

SBB 0.33 1.06
SCIP 0.7 0.45

Variables 20 36
Binaries 0 25
Integers 13 0

Type MIQP MBQCQP
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Future work

Implementations of the algorithm

I Mathematica / Wolfram Language. Early prototype
“available”.

I COIN-OR: Utilize the Optimization Services and Open
Solver Interface APIs.

I GAMS

Development of the algorithm

I Pseudoconvex constraints and objective functions.

I Selection (update) strategies of the interior point.

I Strategies for the LP1/LP2 steps.
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Thank you!
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