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Derivative-free Continuous Optimization

Why Derivative-free Methods?

1 Objection function and/or Constraints are based on Black-Box &
Expensive to Evaluate

2 Objection Function is Noisy

General Continuous Optimization Problem

(P)


min

x
f (x)

s.t. gi (x) ≤ 0, i = 1, · · · ,m,
X ⊂ Rn,

(1)

Are there Derivative-free Methods (P)? NO
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Derivative-free Methods

1 Geometry-based Methods: Downhill Simplex, Pattern Search,
Line-search using simplex derivatives

2 Model-based Methods: Quadratic Model of the Objective Function

Can One Show Deterministic Convergence?

1 Downhill Simplex: No Guarantee

2 Pattern Search: Converges but only if f (x) is Differentiable

3 Model based Methods: Good Algorithms have been Developed for
Bound or Linear Constraints but no Theoretical Convergence
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Derivative-free Methods

Many Problem are Solved Anyway But Good Accuracies either not Possible
or bring Burden to Function Evaluations
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The General MINLP

We Consider Mixed Integer Program

(MP)


min
xc , xd

f (xc , xd )

s.t. gi (xc , xd ) ≤ 0, i = 1, · · · ,m,
xc ∈ X , xd ∈ Y integer ,

(2)

Non-linearities involve both in xc and xd

X ⊂ Rn is bounded convex polyhedral set

Y ⊂ Rp is a polyhedral set of integers
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Derivative-free MINLP

Solution Methods for the Mixed Integer Programs Depends on the Solution
Methods for Continuous Programs

Derivative-free?

Subgradient-based Approach?

Combined?
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Derivative-free Method of Powell for Continuous Problem

BOBYQA: The Derivative-free Method of Powell

1 BOBYQA Solves

(BP)

{
min

x
f (x)

s.t. x ∈ X = [l , u]
(3)

2 It Constructs a Series of Quadratic Approximation Qk to f (x) using
m ∈ [n + 2, 1

2(n + 1)(n + 2)] points, m = 2n + 1

3 It is a Trust Region Method with Two Trust Region Radii ρk and ∆k

4 The Inner Radius ρk is used to Restrict the Placement of new
Interpolation Points, Stopping BOBYQA.
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Basic Features of Derivative-free Method BOBYQA

min
dk

Qk(xk + dk) (4)

s.t. l ≤ xk + dk ≤ u,

‖dT
k ‖ ≤ ∆k

max
dk

|Λt(xk + dk)| (5)

s.t. l ≤ xk + dk ≤ u,

‖dT
k ‖ ≤ ∆k
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Basic Features of Derivative-free Method BOBYQA

Qk(yi ) = f (yi ), i ∈ K , (6)

f (xk) = min {f (yi ) : i ∈ K} .

ŷi =

{
yi , i 6= t,
xk + dk , i = t.

(7)

xk+1 =

{
xk , f (xk) ≤ f (xk + dk),

xk + dk , f (xk) > f (xk + dk).

Qk+1(ŷi ) = f (ŷi ), i ∈ K . (8)
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Basic Features of Derivative-free Method BOBYQA

Generate Qk+1 from Qk by minimising ‖∇2Qk+1 −∇2Qk‖F subject to

Qk+1(ŷi ) = f (ŷi ), i ∈ K . (9)

This is Done by Solving a System of Linear Equations.

[
A Y T

Y 0

] λ

p
q

 =

[
r
0

]
,

W =

[
A Y T

Y 0

]−1

=

[
Ω ΞT

Ξ 0

]
.
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HEMBOQA: The Modified BOBYQA for Bound Constraints MINLP

New Modified Features of BOBYQA for Derivative-free MINLP

1 Generating Initial Interpolating Point

2 Introducing Feasible Continuous Manifold to Insure Good Continuous
Solution

3 Handling The Pattern and Step Length

4 Constraints in the Subproblem: Quadratic to Linear
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HEMBOQA: The Modified BOBYQA for Bound Constraints MINLP

‖dk‖ ≤ ∆k has been Replaced by −∆k ≤ dk ≤ ∆k

min
dk

Qk(xk + dk) (10)

s.t. l ≤ xk + dk ≤ u,
−∆k ≤ dk ≤ ∆k ,

dT
k =

[
d c
k

T , dd
k

T
]T
∈ R nc × Znd ,

max
dk

|Λt(xk + dk)| (11)

s.t. l ≤ xk + dk ≤ u,
−∆k ≤ dk ≤ ∆k ,

dT
k =

[
d c
k

T , dd
k

T
]T
∈ R nc × Znd ,

These MIQPs are Solved basing on Hcc being PD, PSD, Indefinite
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Definition of Local Minimizers

Definition

(Continuous local minimum) A point x∗ ∈ Ωc is a local minimum if, for
some ε > 0,

f (x∗) ≤ f (x), ∀x ∈ Bε(x∗).

Definition

(Discrete local minimum) A point x∗ ∈ Ωd is a local minimum if,

f (x∗) ≤ f (x), ∀x ∈ Nd (x∗).

Definition

(Global minimum) A point x∗ ∈ Ωm is a global minimum if,

f (x∗) ≤ f (x), ∀x ∈ Ωm.
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Definition of Local Minimizers for MINLP

i) A point is a local minimum of a continuous, convex problem if and
only if it is the global minimum.

ii) If nc = 0 (discrete problem) and Nd (x) = Ωd then a point is a local
minimum of the problem if and only if it is a global minimum.
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Definition of Local Minimizers for MINLP

1) The definition of a mixed integer local minimum reduces to Continuous
Definition when nd = 0.

2) The definition of a mixed integer local minimum reduces to Discrete
Definition when nc = 0.

3) The definition of a mixed integer local minimum allows the user some
control over the size of Nm.

4) If Nm contains at least one point on each feasible continuous manifold
and f and ci are convex then a point is a local minimum of a mixed
integer problem if and only if it is a global minimum.
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Definition of Local New Local Minimum for MINLP

Figure: Definition of the New Local Minimum
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Definition
(Separate local minimum) A point x∗ ∈ Ωm is a local minimum if, for some
ε > 0,

f (x∗) ≤ f (x), ∀x ∈ {x : xc ∈ Bε(x∗c ), xd = x∗d} ∩ Ωm, (12)
f (x∗) ≤ f (x), ∀x ∈ Nr (x∗) ∩ Ωm. (13)

Definition
A point x∗ ∈ Ωm is a local minimum if, for some ε > 0,

f (x∗) ≤ f (x), ∀x ∈

 ⋃
x∈Nr (x∗)

Bε(xc)× {xd}

⋂Ωm,

Nr (x) = {y ∈ R n : yc = xc , ‖yd − xd‖ ≤ 1}.
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Definition of Local Minimizers for MINLP

Definition
(Combined local minimum) A point x∗ ∈ Ωm is a local minimum if, for
some ε > 0,

f (x∗) ≤ f (x), ∀x ∈ {x : xc ∈ Bε(x∗c ), xd = x∗d} ∩ Ωm, (14)
f (x∗) ≤ f (x), ∀x ∈ Ncomb(x∗) ∩ Ωm. (15)

where Ncomb(x∗) is the set of smallest local minima on each feasible
continuous manifold on which Nr (x∗) has a point.
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Definition of the New Local Minimum for MINLP

min
[y ,x]

5
2

(x + y)2 +
1√
2

(−x + y) (16)

s.t. − 2 ≤ x , y ≤ 2,
y ∈ R, x ∈ Z.
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Definition of the New Local Minimum for MINLP

Figure: Definition of the New Local Minimum
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Definition of the New Local Minimum for MINLP

Figure: Definition of the New Local Minimum
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Three Different Derivative-free Algorithms for MINLP

i) HEMBOQA Heuristic is the Direct Adaption of Powell’s BOBYQA

ii) SEMBOQA Deterministic is based on Definition 1

iii) COMBOQA Deterministic is based on the New Definition, Definition 3

Finite Convergence Proof within ε Neighborhood for SEMBOQA
and COMBOQA

Newby & Ali (2014): Computational Optimization and Applications
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Performance Profile using Function Values

Figure: Performance Profile using Function Values
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Performance Profile using CPU Times

Figure: Performance Profile using CPU Times
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Convex MINLP and Outer Approximation

Mixed-integer Nonlinear Programming Problem (MINLPs)

(MP)


min
x , y

f (x , y)

s.t. gi (x , y) ≤ 0, i = 1, · · · ,m,
x ∈ X , y ∈ Y integer ,
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Convex MINLP and Outer Approximation

Outer Approximation for convex and Smooth MINLPs

Key Idea: Reformulate MINLP as an MILP: (Duran and Grossmann, 1986;
Fletcher and Leyffer, 1994)

Given some set K with optimal solutions of NLP subproblems, build a
relaxation of (MP):

min θ

s.t. f (xj , yj) + Of (xj , yj)
T
(

x − xj
y − yj

)
≤ θ,

gi (xj , yj) + Ogi (xj , yj)
T
(

x − xj
y − yj

)
≤ 0,∀i ,

x ∈ X , y ∈ Y integer

∀(xj , yj) ∈ K
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Convex MINLP with Non-differentiable Data

(MP)


min
x , y

f (x , y)

s.t. gi (x , y) ≤ 0, i = 1, · · · ,m,
x ∈ X , y ∈ Y integer ,

f , gi are Convex, but not Differentiable
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Convex MINLP with Non-differentiable Data


min
x , y

f (x , y) = x2

s.t. g(x , y) = x2
1 + x2

2 + |y | − 2 ≤ 0,
x = (x1, x2) ∈ R2, y ∈ {−1, 0, 1, 3}

Theorem
Let φ : Rn ×Rp → R be continuous convex function and (x̄ , ȳ) ∈ Rn ×Rp.
Then for any ᾱ ∈ ∂φ(·, ȳ)(x̄), there exist β̄ ∈ Rp such that
(ᾱ, β̄) ∈ ∂φ(x̄ , ȳ).
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NLP subproblem P(yj) fixed:

P(yj)


min

x
f (x , yj)

s.t. gi (x , yj) ≤ 0, i = 1, · · · ,m,
x ∈ X .

Divide Y into two sets:{
T := {yj ∈ Y : P(yj) is feasible}
S := {yl ∈ Y : P(yl ) is infeasible}
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Let yj ∈ T and given one optimal solution xj to P(yj).

By KKT conditions, there are (λj ,1, · · · , λj ,m) ∈ Rm
+ such that

0 ∈ ∂f (·, yj)(xj) +
m∑

i=1

λj ,i∂gi (·, yj)(xj) + N(X , xj)

Take αj ∈ ∂f (·, yj)(xj) and ξj ,i ∈ ∂gi (·, yj)(xj)(i = 1, · · · ,m).

It is proved that there exist βj and ηj ,i such that

(αj , βj) ∈ ∂f (xj , yj) and (ξj ,i , ηj ,i ) ∈ ∂gi (xj , yj), i = 1, · · · ,m.
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Let yl ∈ S . NLP subproblem F (yl ):

F (yl )


min

x

∑
i∈J⊥l

max{gi (x , yl ), 0}

s.t. gi (x , yl ) ≤ 0 ∀i ∈ Jl ,
x ∈ X ,

where Jl ⊂ {1, · · · ,m} and J⊥l := {1, · · · ,m}\Jl

Given one optimal solution xl , by KKT conditions, there are λl ,i ∈ R+ for
all i ∈ J⊥l ∪ Jl such that

0 ∈
∑
i∈J⊥l

λl ,i∂gi (·, yl )(xl ) +
∑
i∈Jl

λl ,i∂gi (·, yl )(xl ) + N(X , xl )

Take ξl ,i ∈ ∂gi (·, yl )(xl ) and there exist ηl ,i such that

(ξl ,i , ηl ,i ) ∈ ∂gi (xl , yl ) ∀i ∈ J⊥l ∪ Jl .
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Substitute gradients with subgradients:

Of (xj , yj)← (αj , βj)

Ogi (xj , yj)← (ξj ,i , ηj ,i ), yj ∈ T , i = 1, · · · ,m
Ogi (xl , yl )← (ξl ,i , ηl ,i ), yl ∈ S , i = 1, · · · ,m

Reformulate convex MINLP as an MILP:

min
x , y , θ

θ

s.t. f (xj , yj) + (αj , βj)
T
(

x − xj
y − yj

)
≤ θ,∀yj ∈ T

gi (xj , yj) + (ξj ,i , ηj ,i )
T
(

x − xj
y − yj

)
≤ 0, ∀yj ∈ T ,∀i ,

gi (xl , yl ) + (ξl ,i , ηl ,i )
T
(

x − xl
y − yl

)
≤ 0,∀yl ∈ S ,∀i ,

x ∈ X , y ∈ Y integer
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The Subgradients chosen from the KKT Conditions enable to Reformulate
Convex MINLP as an Equivalent MILP by Outer Approximation.

However, this Procedure may be not Valid if arbitrary Subgradients are
chosen to Replace Gradients. See the following example:
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min
x , y

f (x , y) := x + y

s.t. g1(x , y) := max{−x + y + 1, x − y + 1} ≤ 0,
g2(x , y) := x − y ≤ 0,
x ∈ [0, 2], y ∈ {1, 2, 3}.

This convex MINLP is Infeasible.

However, take y0 = 1 and x0 = 1 solves NLP Subproblem F (y0).

If we choose (ξ0,1, η0,1) = (1, 1) ∈ ∂g1(x0, y0), (ξ0,2, η0,2) = Og2(x0, y0)
and (α0, β0) = Of (x0, y0),

then an Infinite Loop between points (x0, y0) and (0, 1) may be generated
by the Outer Approximation.

Since KKT conditions at (x0, y0) for (ξ0,1, η0,1) does not hold:

6 ∃(λ0,1, λ0,2) ∈ R2
+ with Of (x0, y0) + λ0,1(ξ0,1, η0,1) + λ0,2Og2(x0, y0) = 0.
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MINLPs with Vector Conic Constraint and Generalized Benders Decomposition

Mixed-integer Nonlinear Programming Problem (MINLPs)

(MP)


min
x , y

f (x , y)

s.t. g(x , y) ≤ 0,
x ∈ X , y ∈ Y integer ,

f : Rn × Rp → R, g : Rn × Rp → Rm are nonlinear functions
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MINLP with Vector Conic Constraint

Let E ,Z be two Banach spaces, D be a Normed Linear Space

Let K be a Closed Convex Cone in Z and Define Partial Order ≤K :

z1 ≤K z2 ⇔ z2 − z1 ∈ K for all z1, z2 ∈ Z .

(VOP)


min
x , y

f (x , y)

s.t. g(x , y) ≤K 0,
x ∈ X , y ∈ Y discrete variable,

f : X × Y → R and g : X × Y → Z

X ⊂ E is a Convex and Compact set, Y ⊂ D a set with discrete variables

For MINLP (MP), take E := Rn, Z := Rm, D := Rp and K := Rm
+
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Consider Convex Primal Problem:

(P)


min

x
f (x)

s.t. g(x) ≤K 0,
x ∈ X ,

f : X → R is convex

g : X → Z is K -convex

X ⊂ E is convex

The Dual Problem of Primal (P)

D max
u∗∈K+

[
inf
x∈X
{f (x) + 〈u∗, g(x)〉}

]
,

K+ := {z∗ ∈ Z ∗ : 〈z∗, z〉 ≥ 0, ∀z ∈ K} — the Dual Cone of K .
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Lagrange Multiplier:

Linear Continuous Functional ū∗ ∈ Z ∗ is a Lagrange Multiplier for Problem
(P), if there exists x̄ ∈ X such that

(1) f (x̄) + 〈ū∗, g(x̄)〉 = min
x∈X

{
f (x) + 〈ū∗, g(x)〉

}
,

(2) 〈ū∗, g(x̄)〉 = 0,
(3) ū∗ ∈ K+,
(4) g(x̄) ≤K 0.

Perturbation Function v(·):

v(z) := inf
x∈X

{
f (x) : g(x) ≤K z

}
, for all z ∈ Z

It has been Proved that

ū∗ ∈ Z ∗ is a Lagrange Multiplier ⇔ −ū∗ ∈ ∂v(0)
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Generalized Benders Decomposition:

Refs: Geoffrion, 1971; Geoffrion, 1972; Grossmann, 2002;

Back to (VOP):

(VOP)


min
x , y

f (x , y)

s.t. g(x , y) ≤K 0,
x ∈ X , y ∈ Y discrete variable,

f is Continuous and f (·, y) is Convex on X

g is Continuous and g(·, y) is K -convex on X

X ⊂ E is a Convex and Compact set

Y ⊂ D a set with Discrete Variables
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Generalized Benders Decomposition for (VOP)

Let y ∈ Y be Fixed. Consider Primal Problem P(y):

P(y)


min

x
f (x , y)

s.t. g(x , y) ≤K 0,
x ∈ X ,

The Associate Dual Problem D(y):

D(y) max
u∗∈K+

[
inf
x∈X
{f (x , y) + 〈u∗, g(x , y)〉}

]
The Perturbation Function vy (·) of P(y):

vy (z) := inf
x∈X
{f (x , y) : g(x , y) ≤K z}, ∀z ∈ Z .
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Generalized Benders Decomposition for (VOP)

Generalized Benders Decomposition for (VOP)

RMPk,j


min
y ,η

η

s.t. inf
x∈X
{f (x , y) + 〈u∗i ,j , g(x , y)〉} ≤ η, ∀i = 1, · · · , k ,

inf
x∈X
〈z∗k,l , g(x , y)〉 ≤ 0, ∀l = 1, · · · , j ,

y ∈ Y , η ∈ R.

Denote (yk+1,j , ηk+1,j) optimal solution of RMPk,j .
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Generalized Benders Decomposition for (VOP)

Generalized Benders Decomposition for (VOP)

RMPk,j+1


min
y ,η

η

s.t. η ≥ inf
x∈X
{f (x , y) + 〈u∗i ,j , g(x , y)〉}, ∀i = 1, · · · , k ,

inf
x∈X
〈z∗k,l , g(x , y)〉 ≤ 0, ∀l = 1, · · · , j , j + 1,

y ∈ Y , η ∈ R.

Denote (yk+1,j+1, ηk+1,j+1) the optimal solution of RMPk,j+1.
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Thank You!
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