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@ Derivative-free Continuous & Mixed Integer Optimization
@ Derivative-free Methods for Bound Constraints MINLP
© Local Minima of Mixed Integer Programs

@ Three Different Derivative-free Algorithms for MINLP

© Convex MINLP and Outer Approximation

@ MINLPs with Vector Conic Constraint and Generalized Benders
Decomposition
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Derivative-free Continuous Optimization

Why Derivative-free Methods?
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Derivative-free Continuous Optimization

Why Derivative-free Methods?

@ Objection function and/or Constraints are based on Black-Box &
Expensive to Evaluate

@ Objection Function is Noisy

General Continuous Optimization Problem

min  f(x)
(P)q st gi(x)<0,i=1,---,m, (1)
X C R,

Are there Derivative-free Methods (P)?
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Derivative-free Continuous Optimization

Why Derivative-free Methods?

@ Objection function and/or Constraints are based on Black-Box &
Expensive to Evaluate

@ Objection Function is Noisy

General Continuous Optimization Problem

min  f(x)
(P)q st gi(x)<0,i=1,---,m, (1)
X C R,

Are there Derivative-free Methods (P)? NO
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Derivative-free Methods

© Geometry-based Methods: Downbhill Simplex, Pattern Search,
Line-search using simplex derivatives
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Derivative-free Methods

© Geometry-based Methods: Downbhill Simplex, Pattern Search,
Line-search using simplex derivatives

@ Model-based Methods: Quadratic Model of the Objective Function

Can One Show Deterministic Convergence?
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Derivative-free Methods

© Geometry-based Methods: Downbhill Simplex, Pattern Search,
Line-search using simplex derivatives

@ Model-based Methods: Quadratic Model of the Objective Function

Can One Show Deterministic Convergence?

@ Downhill Simplex: No Guarantee

@ Pattern Search: Converges but only if (x) is Differentiable

© Model based Methods: Good Algorithms have been Developed for
Bound or Linear Constraints but no Theoretical Convergence
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Derivative-free Methods

Many Problem are Solved Anyway But Good Accuracies either not Possible
or bring Burden to Function Evaluations
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The General MINLP

We Consider Mixed Integer Program
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The General MINLP

We Consider Mixed Integer Program

min f(xc, Xq)
Xcy Xd

(MP)q sit. gi(xe,xq) <0,i=1,--- m, (2)
xc € X, xqg € Y integer,
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The General MINLP

We Consider Mixed Integer Program

min f(xc, Xq)
Xcy Xd

(MP)q sit. gi(xe,xq) <0,i=1,--- m, (2)
xc € X, xqg € Y integer,

@ Non-linearities involve both in x. and xy4
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The General MINLP

We Consider Mixed Integer Program

min f(xc, Xq)
Xcy Xd

(MP)q sit. gi(xe,xq) <0,i=1,--- m, (2)
xc € X, xqg € Y integer,

@ Non-linearities involve both in x. and xy4
e X C R" is bounded convex polyhedral set

@ Y C RP is a polyhedral set of integers
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Derivative-free MINLP

Solution Methods for the Mixed Integer Programs Depends on the Solution
Methods for Continuous Programs
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Solution Methods for the Mixed Integer Programs Depends on the Solution
Methods for Continuous Programs
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Derivative-free MINLP

Solution Methods for the Mixed Integer Programs Depends on the Solution
Methods for Continuous Programs

Derivative-free?
Subgradient-based Approach?

Combined?
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Derivative-free Method of Powell for Continuous Problem

BOBYQA: The Derivative-free Method of Powell
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Derivative-free Method of Powell for Continuous Problem

BOBYQA: The Derivative-free Method of Powell
@ BOBYQA Solves

s.it. xe X =]l,4]

min f(x
(BP){ i e 3)
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Derivative-free Method of Powell for Continuous Problem

BOBYQA: The Derivative-free Method of Powell
@ BOBYQA Solves

s.it. xe X =]l,4]

min f(x
(BP){ i e 3)

@ It Constructs a Series of Quadratic Approximation Qi to f(x) using
m € [n+2,3(n+1)(n+2)] points, m=2n+1
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Derivative-free Method of Powell for Continuous Problem

BOBYQA: The Derivative-free Method of Powell
@ BOBYQA Solves

s.it. xe X =]l,4]

min f(x
(BP){ i e 3)

@ It Constructs a Series of Quadratic Approximation Qi to f(x) using
m € [n+2,3(n+1)(n+2)] points, m=2n+1

@ Itis a Trust Region Method with Two Trust Region Radii py, and Ay

@ The Inner Radius p is used to Restrict the Placement of new
Interpolation Points, Stopping BOBYQA.
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Basic Features of Derivative-free Method BOBYQA

n;in Qr(xk + dk) (4)

k
st. I<xe+di <u,

1 || < A«
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Basic Features of Derivative-free Method BOBYQA

n;ikn Q(xkc + dk) (4)
st. [ <xx+d <u,

| < A
max At (xk + di)| (5)
st. I <xx+d <u,

1 1| < Ax
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Basic Features of Derivative-free Method BOBYQA

Qulyi) =f(yi), i€k, (6)

f(xk) =min{f(y;):i € K}.
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Basic Features of Derivative-free Method BOBYQA

Qulyi) =f(yi), i€k, (6)

f(xk) =min{f(y;):i € K}.

X+ de, i=t.

5/\[_ _ {yia I?é t, (7)
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Basic Features of Derivative-free Method BOBYQA

Qulyi) =f(yi), i€k, (6)
Flxi) = min {F(yi) : i € K}

5/\[_ _ {yia I?é t, (7)

X+ de, i=t.

N _ Xk, f(Xk) < f(Xk + dk),
T Vet di F) > Flx + di).

Qur(yi) =), €K (8)
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Basic Features of Derivative-free Method BOBYQA

Generate Qi1 from Q, by minimising ||[V2Q,,1 — V2Qx||r subject to

Qe (vi) =f(yi), i€K. (9)
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Basic Features of Derivative-free Method BOBYQA

Generate Qi1 from Q by minimising | V?Q.1 — V2 Q|| subject to

Qe (vi) =f(yi), i€K. (9)

This is Done by Solving a System of Linear Equations.
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Basic Features of Derivative-free Method BOBYQA

Generate Qi1 from Q by minimising | V?Q.1 — V2 Q|| subject to

Qe (vi) =f(yi), i€K. (9)

This is Done by Solving a System of Linear Equations.
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HEMBOQA: The Modified BOBYQA for Bound Constraints MINLP

New Modified Features of BOBYQA for Derivative-free MINLP

O Generating Initial Interpolating Point
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O Generating Initial Interpolating Point

@ Introducing Feasible Continuous Manifold to Insure Good Continuous
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© Handling The Pattern and Step Length
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HEMBOQA: The Modified BOBYQA for Bound Constraints MINLP

New Modified Features of BOBYQA for Derivative-free MINLP

O Generating Initial Interpolating Point

@ Introducing Feasible Continuous Manifold to Insure Good Continuous
Solution

© Handling The Pattern and Step Length

@ Constraints in the Subproblem: Quadratic to Linear
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HEMBOQA: The Modified BOBYQA for Bound Constraints MINLP

lldk|| < Ak has been Replaced by —A, < dy < Ay
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HEMBOQA: The Modified BOBYQA for Bound Constraints MINLP

lldk|| < Ak has been Replaced by —A, < dy < Ay
I’Tol/in Qk(Xk + dk) (10)
k

st. < xx+d <u,
— A < di <Ay,

di = [de7. dfT}T eR" x 7",
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HEMBOQA: The Modified BOBYQA for Bound Constraints MINLP

lldk|| < Ak has been Replaced by —A, < dy < Ay

I’Tol/in Qk(Xk + dk) (10)
k
st. [ <xx+di <u,

— A < di < Ay,

di = [de7. dﬂT eR" x 7",

max |/\t(Xk + dk)| (11)

st. I <xx+d <u,
— Ay <dp <Ay,

T
d/;l' _ |:d[fT, d;(fTi| c Rnc % an7

These MIQPs are Solved basing on H. being PD, PSD, Indefinite
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Definition of Local Minimizers

Definition

(Continuous local minimum) A point x* € Q. is a local minimum if, for
some € > 0,
f(x*) < f(x), Vxe B(x").
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Definition of Local Minimizers

Definition

(Continuous local minimum) A point x* € Q. is a local minimum if, for
some € > 0,
f(x*) < f(x), Vxe B(x").

Definition

(Discrete local minimum) A point x* € Q4 is a local minimum if,

F(x*) < f(x), V¥x € Ny(x?).
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Definition of Local Minimizers

Definition

(Continuous local minimum) A point x* € Q. is a local minimum if, for
some € > 0,
f(x*) < f(x), Vxe B(x").

Definition

(Discrete local minimum) A point x* € Q4 is a local minimum if,

F(x*) < f(x), Vx € Ny(x*).

Definition

(Global minimum) A point x* € Q, is a global minimum if,

f(x*) < f(x), Vxe€Qn.
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Definition of Local Minimizers for MINLP

i) A point is a local minimum of a continuous, convex problem if and
only if it is the global minimum.
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Definition of Local Minimizers for MINLP

i) A point is a local minimum of a continuous, convex problem if and
only if it is the global minimum.

ii) If nc =0 (discrete problem) and Ny(x) = Q4 then a point is a local
minimum of the problem if and only if it is a global minimum.
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Definition of Local Minimizers for MINLP

1) The definition of a mixed integer local minimum reduces to Continuous
Definition when ny = 0.
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Definition of Local Minimizers for MINLP

1) The definition of a mixed integer local minimum reduces to Continuous
Definition when ny = 0.

2) The definition of a mixed integer local minimum reduces to Discrete
Definition when n. = 0.
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Definition of Local Minimizers for MINLP

1) The definition of a mixed integer local minimum reduces to Continuous
Definition when ny = 0.

2) The definition of a mixed integer local minimum reduces to Discrete
Definition when n. = 0.

3) The definition of a mixed integer local minimum allows the user some
control over the size of Npy,.
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Definition of Local Minimizers for MINLP

1) The definition of a mixed integer local minimum reduces to Continuous
Definition when ny = 0.

2) The definition of a mixed integer local minimum reduces to Discrete
Definition when n. = 0.

3) The definition of a mixed integer local minimum allows the user some
control over the size of Npy,.

4) If Ny, contains at least one point on each feasible continuous manifold
and f and ¢; are convex then a point is a local minimum of a mixed
integer problem if and only if it is a global minimum.
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Definition of Local New Local Minimum for MINLP

Figure: Definition of the New Local Minimum

X —=—)
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(Separate local minimum) A point x* € Qp, is a local minimum if, for some
e >0,

f(x*) <f(x), ¥Yxe{x:xc€ BAxZ), xg = x3} N LA, (12)
f(x*) < f(x), VYxeN(x)NQp. (13)
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(Separate local minimum) A point x* € Q, is a local minimum if, for some
e >0,

f(x*) <f(x), ¥Yxe{x:xc€ BAxZ), xg = x3} N LA, (12)
f(x*) < f(x), VxeN(x*)N Q. (13)

A point x* € Q,, is a local minimum if, for some € > 0,

Fx) < f(x), Wxe| (J Belxe)x{x}|[)m

XEN(x*)

A
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(Separate local minimum) A point x* € Q, is a local minimum if, for some
e >0,

f(x*) <f(x), ¥Yxe{x:xc€ BAxZ), xg = x3} N LA, (12)
f(x*) < f(x), VxeN(x*)N Q. (13)

A point x* € Q,, is a local minimum if, for some € > 0,

Fx) < f(x), Wxe| (J Belxe)x{x}|[)m

XEN(x*)

A

No(x)={y eR": yc = xc, |lyg — x4l < 1}.
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Definition of Local Minimizers for MINLP

(Combined local minimum) A point x* € Qp, is a local minimum if, for
some € > 0,
F(x*) < f(x), Vx€{x:xc €B:(x{), xa = x3}t N Qm,  (14)
f(x*) < f(x), Vx € Neomb(X*) N Q. (15)

where Momp(x*) is the set of smallest local minima on each feasible
continuous manifold on which N, (x*) has a point.
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Definition of the New Local Minimum for MINLP

. 5 5 1
min  —(x + + —(—x+ 16
min S0ty + s(ox ) (16)
st. —2<x,y <2,

yeR, xeZ.
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Definition of the New Local Minimum for MINLP

Figure: Definition of the New Local Minimum
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Definition of the New Local Minimum for MINLP

Figure: Definition of the New Local Minimum
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Three Different Derivative-free Algorithms for MINLP

i) HEMBOQA Heuristic is the Direct Adaption of Powell's BOBYQA
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Three Different Derivative-free Algorithms for MINLP

i) HEMBOQA Heuristic is the Direct Adaption of Powell's BOBYQA

i) SEMBOQA Deterministic is based on Definition 1
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Three Different Derivative-free Algorithms for MINLP

i) HEMBOQA Heuristic is the Direct Adaption of Powell's BOBYQA
i) SEMBOQA Deterministic is based on Definition 1

i) COMBOQA Deterministic is based on the New Definition, Definition 3
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Three Different Derivative-free Algorithms for MINLP

i) HEMBOQA Heuristic is the Direct Adaption of Powell's BOBYQA
i) SEMBOQA Deterministic is based on Definition 1

i) COMBOQA Deterministic is based on the New Definition, Definition 3

Finite Convergence Proof within ¢ Neighborhood for SEMBOQA
and COMBOQA

Newby & Ali (2014): Computational Optimization and Applications
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Performance Profile using Function Values

Figure: Performance Profile using Function Values
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Performance Profile using CPU Times

Figure: Performance Profile using CPU Times
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Convex MINLP and Outer Approximation

Mixed-integer Nonlinear Programming Problem (MINLPs)
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Convex MINLP and Outer Approximation

Mixed-integer Nonlinear Programming Problem (MINLPs)

min f(x,y)
X?y
(MP)< s.t. gi(x,y)<0,i=1,--- ,m,

x € X,y € Y integer,
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Convex MINLP and Outer Approximation

Outer Approximation for convex and Smooth MINLPs
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Convex MINLP and Outer Approximation

Outer Approximation for convex and Smooth MINLPs

Key Idea: Reformulate MINLP as an MILP: (Duran and Grossmann, 1986;
Fletcher and Leyffer, 1994)
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Convex MINLP and Outer Approximation

Outer Approximation for convex and Smooth MINLPs

Key Idea: Reformulate MINLP as an MILP: (Duran and Grossmann, 1986;
Fletcher and Leyffer, 1994)

Given some set K with optimal solutions of NLP subproblems, build a
relaxation of (MP):
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Convex MINLP and Outer Approximation

Outer Approximation for convex and Smooth MINLPs

Key Idea: Reformulate MINLP as an MILP: (Duran and Grossmann, 1986;
Fletcher and Leyffer, 1994)

Given some set K with optimal solutions of NLP subproblems, build a
relaxation of (MP):

( min 0
st F(x,y) + V(x5 y) T (X :XJ> <0,
A _y;. V(x,y) € K
6105 ) + V&) T (< y,) <oV,
J

L x € X,y € Y integer
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Convex MINLP with Non-differentiable Data
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Convex MINLP with Non-differentiable Data

min f(x,y)

7y
(MP)< s.t. gilx,y) <0,i=1---,m,
x € X,y € Y integer,
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Convex MINLP with Non-differentiable Data
min f(x,y)

7y
(MP)q s.t. gilx,y) <0,i=1---,m,
x € X,y € Y integer,

f,g; are Convex, but not Differentiable
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Convex MINLP with Non-differentiable Data
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Convex MINLP with Non-differentiable Data

min f(x,y) = x
X?y

s.t. g(x,y) :x12+x22+ ly| =2 <0,
x=(x1,x)€R? yec{-1,01,3}

Let ¢ : R" x RP — R be continuous convex function and (%,y) € R" x RP.
Then for any & € 0¢(-,y)(X), there exist 5 € RP such that

(@, 5) € 0¢(%, 7).
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NLP subproblem P(y;) fixed:
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NLP subproblem P(y;) fixed:

min  f(x,y;)
X
Pyj){ st gi(xy) <0, i=1,--,m,
x e X.

Divide Y into two sets:
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NLP subproblem P(y;) fixed:

min  f(x,y;)
X
Pyj){ st gi(xy) <0, i=1,--,m,
x e X.

Divide Y into two sets:

T :={y; € Y : P(y)) is feasible}
S:=A{y; €Y :P(y) is infeasible}
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Let yj € T and given one optimal solution x; to P(y;).
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Let yj € T and given one optimal solution x; to P(y;).
By KKT conditions, there are (Xj 1, ,Ajm) € R such that
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Let yj € T and given one optimal solution x; to P(y;).
By KKT conditions, there are (Xj 1, ,Ajm) € R such that

0€ Of(,y7)0) + D _ \j.idai(-, ) () + N(X, %)
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Let yj € T and given one optimal solution x; to P(y;).
By KKT conditions, there are (Xj 1, ,Ajm) € R such that

0€ Of(,y7)0) + D _ \j.idai(-, ) () + N(X, %)

Take o € Of (-, y;)(x;) and & i € Ogi(-, y))(x)(i = 1,--- , m).
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Let yj € T and given one optimal solution x; to P(y;).
By KKT conditions, there are (Xj 1, ,Ajm) € R such that

0€ Of(,y7)0) + D _ \j.idai(-, ) () + N(X, %)

Take o € Of (-, y;)(x;) and & i € Ogi(-, y))(x)(i = 1,--- , m).
It is proved that there exist 3; and 7); ; such that
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Let yj € T and given one optimal solution x; to P(y;).
By KKT conditions, there are (Xj 1, ,Ajm) € R such that

0. € I (-, 7)) + D Nid&i(- ) (%) + N(X, x)
i=1
Take o € Of (-, y;)(x7) and & € Ogi(-, y;) () (i = 1,--- , m).

It is proved that there exist 3; and 7); ; such that

(0, B)) € 0f(x;,y;) and (&,i,mji) € 0gi(x;,y;),i =1, ,m.
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Let y; € S. NLP subproblem F(y):
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Let y; € S. NLP subproblem F(y):

min Z maX{g,'(X,y/),O}
X iedt
F(yl) s.t. gi(Xa.y/) <0 Vie J/’
x € X,

where J; C {1,--- ., m} and Ji- :=={1,--- ,m}\J,
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Let y; € S. NLP subproblem F(y):

min > max{gi(x,y),0}

X

s iedi-
(yl) s.t. gi(Xa.y/) <0 Vie J/’
x € X,

where J; C {1,--- ., m} and Ji- :=={1,--- ,m}\J,

Given one optimal solution x;, by KKT conditions, there are \;; € R for
all j e Jf U J; such that

0€ > N0l y) ) + > Mg, yi)(x1) + N(X, x)

iedt i€
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Let y; € S. NLP subproblem F(y):

min Y. max{gi(x,y),0}
X iedt
F(yl) s.t. g;(x,y/) <0 ViedJ,
x € X,
where J; C {1,--- ., m} and Ji- :=={1,--- ,m}\J,

Given one optimal solution x;, by KKT conditions, there are \;; € R for
all j e Jf U J; such that

0€ > N0l y) ) + > Mg, yi)(x1) + N(X, x)

el i)
Take & ; € 0gi(-,y1)(x;) and there exist 7, ; such that

(&1ism1i) € Ogi(x1, 1) Vi€ Ji-U .
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Substitute gradients with subgradients:

V(x5 y5) < (o, B))
Vgl(xjayj) < (gj,ianj,i)7yj € T7’ = ]-7 , M
vgi(xlay/) — (5/,1'777/,1')7)// € S: I = 17' o ,Mm
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Substitute gradients with subgradients:

VE(x,y) < (o, B))
vei(xj,yj) < (&imi)yy € T,i=1,---,m
vgi(xlay/) — (5/,1'777/,1')7)// € S: I = 17' o ,Mm

Reformulate convex MINLP as an MILP:
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Substitute gradients with subgradients:

V(x5 ) < (), 5))
vgl(xjhyj) — (gj,iunj,i)7yj S T7I = ]-7 , M
vgi(xlay/) — (5/,1'777/,1')7)// € S: I = 17' o ,Mm

Reformulate convex MINLP as an MILP:

min 6
X, y,0

sit. 1)+ (0. 5)7 (32 0) <omyeT
Y=Y

X — Xj .
gi(xj. yj) + (&,ismji) " <y _yJ> <0,Vy; € T,Vi,
J

X — X .
gi(Xlay/) + (£I,i777/,i)T ( o ;) < O,V_)// € 57VI7

x € X,y €'Y integer
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The Subgradients chosen from the KKT Conditions enable to Reformulate
Convex MINLP as an Equivalent MILP by Outer Approximation.
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The Subgradients chosen from the KKT Conditions enable to Reformulate
Convex MINLP as an Equivalent MILP by Outer Approximation.

However, this Procedure may be not Valid if arbitrary Subgradients are
chosen to Replace Gradients. See the following example:
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min  f(x,y):=x+y

s.it. gi(x,y) =max{-x+y+1x—y+1} <0,

g2( X,y ) _X_y<0
x€[0,2], y €{1,2,3}.
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min  f(x,y):=x+y
X,y

s.it. gi(x,y) =max{-x+y+1x—y+1} <0,
g(x,y) =x—y <0,
x€[0,2], y € {1,2,3}.

This convex MINLP is Infeasible.
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min  f(x,y):=x+y
X?.y
s.it. gi(x,y) =max{-x+y+1x—y+1} <0,
g(x,y) =x—y <0,
x€[0,2], y € {1,2,3}.
This convex MINLP is Infeasible.

However, take yp = 1 and xg = 1 solves NLP Subproblem F(yp).
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min  f(x,y):=x+y
X?.y

s.it. gi(x,y) =max{-x+y+1x—y+1} <0,
8(xy) =x-y <0,
x€[0,2], y € {1,2,3}.

This convex MINLP is Infeasible.
However, take yp = 1 and xg = 1 solves NLP Subproblem F(yp).

If we choose (£0,1,70,1) = (1,1) € 9g1(x0, ¥0), (§0,2:M0,2) = V&2(x0, ¥0)
and (o, o) = VI (x0, ¥0),
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min  f(x,y):=x+y
X,y

s.it. gi(x,y) =max{-x+y+1x—y+1} <0,
g(x,y) :=x—y <0,
x€[0,2], y € {1,2,3}.
This convex MINLP is Infeasible.
However, take yp = 1 and xg = 1 solves NLP Subproblem F(yp).

If we choose (£0,1,70,1) = (1,1) € 9g1(x0, ¥0), (§0,2:M0,2) = V&2(x0, ¥0)
and (o, o) = VI (x0, ¥0),

then an Infinite Loop between points (xo, yo) and (0,1) may be generated
by the Outer Approximation.
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min  f(x,y):=x+y
X?.y

s.it. gi(x,y) =max{-x+y+1x—y+1} <0,
8(xy) =x-y <0,
x€[0,2], y € {1,2,3}.

This convex MINLP is Infeasible.
However, take yp = 1 and xg = 1 solves NLP Subproblem F(yp).

If we choose (£0,1,70,1) = (1,1) € 9g1(x0, ¥0), (§0,2:M0,2) = V&2(x0, ¥0)
and (o, o) = VI (x0, ¥0),

then an Infinite Loop between points (xo, yo) and (0,1) may be generated
by the Outer Approximation.

Since KKT conditions at (xg, yo) for (£0,1,70,1) does not hold:

B(Mo.1, Mo2) € R with VF(xo, y0) + Xo1(€0,1,70,1) + M2V &2(x0, o) = 0.
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MINLPs with Vector Conic Constraint and Generalized Benders Decomposition

Mixed-integer Nonlinear Programming Problem (MINLPs)
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MINLPs with Vector Conic Constraint and Generalized Benders Decomposition

Mixed-integer Nonlinear Programming Problem (MINLPs)

min  f(x,y)
X?y
(MP)q s.t. g(x,y) <0,

x € X,y € Y integer,
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MINLPs with Vector Conic Constraint and Generalized Benders Decomposition

Mixed-integer Nonlinear Programming Problem (MINLPs)

min  f(x,y)
X?y
(MP)q s.t. g(x,y) <0,

x € X,y € Y integer,

f:R"xRP - R, g:R"”xRP — R™ are nonlinear functions
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MINLP with Vector Conic Constraint
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MINLP with Vector Conic Constraint

Let E, Z be two Banach spaces, D be a Normed Linear Space
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MINLP with Vector Conic Constraint
Let E, Z be two Banach spaces, D be a Normed Linear Space

Let K be a Closed Convex Cone in Z and Define Partial Order <k:
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MINLP with Vector Conic Constraint
Let E, Z be two Banach spaces, D be a Normed Linear Space
Let K be a Closed Convex Cone in Z and Define Partial Order <k:

Z1 <K Z2& 20— 271 € K for all Z1,2p € Z.
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MINLP with Vector Conic Constraint
Let E, Z be two Banach spaces, D be a Normed Linear Space
Let K be a Closed Convex Cone in Z and Define Partial Order <k:
Z1 <K Z2& 20— 271 € K for all Z1,2p € Z.
min £(x.y)

’y
(VOP) S s.t. g(x,y) <k 0,
x € X,y € Y discrete variable,
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MINLP with Vector Conic Constraint
Let E, Z be two Banach spaces, D be a Normed Linear Space
Let K be a Closed Convex Cone in Z and Define Partial Order <k:
Z1 <K Z2& 20— 271 € K for all Z1,2p € Z.
min f(x,y)

(VOP) S s.t. g(x,y) <k 0,
x € X,y € Y discrete variable,

f:XxY—>Randg: XxY —=>Z
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MINLP with Vector Conic Constraint
Let E, Z be two Banach spaces, D be a Normed Linear Space
Let K be a Closed Convex Cone in Z and Define Partial Order <k:
n<kznszn—zn€K foral z,z0 € Z.
min f(x,y)

(VOP) S s.t. g(x,y) <k 0,
x € X,y € Y discrete variable,

f:XxY—>Randg: XxY —=>Z

X C E is a Convex and Compact set, Y C D a set with discrete variables
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MINLP with Vector Conic Constraint
Let E, Z be two Banach spaces, D be a Normed Linear Space
Let K be a Closed Convex Cone in Z and Define Partial Order <k:
n<kznszn—zn€K foral z,z0 € Z.
min f(x,y)

(VOP) S s.t. g(x,y) <k 0,
x € X,y € Y discrete variable,

f:XxY—>Randg: XxY —=>Z
X C E is a Convex and Compact set, Y C D a set with discrete variables

For MINLP (MP), take £ :=R", Z:=R™, D :=RP and K :=RT
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Consider Convex Primal Problem:

min f(x)
(P)S s.t. g(x) <k 0,
x e X,
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Consider Convex Primal Problem:

min f(x)
(P)S s.t. g(x) <k 0,
x e X,

f : X = R is convex
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Consider Convex Primal Problem:

min f(x)
(P)S s.t. g(x) <k 0,
x e X,

f : X = R is convex

g: X — Zis K-convex
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Consider Convex Primal Problem:

min f(x)
(P)S s.t. g(x) <k 0,
x e X,

f: X — R is convex
g: X — Zis K-convex

X C E is convex
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Consider Convex Primal Problem:

min f(x)
(P)S s.t. g(x) <k 0,
x e X,

f: X — R is convex
g : X = Z is K-convex

X C E is convex

The Dual Problem of Primal (P)

Montaz Ali (School of Computational and Algorithms for Non-differentiable MINLP



Consider Convex Primal Problem:

min f(x)
(P)S s.t. g(x) <k 0,
x e X,

f: X — R is convex
g : X = Z is K-convex

X C E is convex

The Dual Problem of Primal (P)

D max [ inf {f(x)+ (v, ()},

ureEKT

Kt :={z"e€ Z*:(z* z) >0, Vz € K} — the Dual Cone of K.
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Lagrange Multiplier:
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Lagrange Multiplier:

Linear Continuous Functional o* € Z* is a Lagrange Multiplier for Problem
(P), if there exists X € X such that
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Lagrange Multiplier:

Linear Continuous Functional o* € Z* is a Lagrange Multiplier for Problem
(P), if there exists X € X such that
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Lagrange Multiplier:

Linear Continuous Functional o* € Z* is a Lagrange Multiplier for Problem
(P), if there exists X € X such that

(1) £(%) + (@, g(x)) = min {f(x) + (0", g(x)) }
(2) (o, g(x)) =0,

(3) * € KT,

(4) g(x) <k 0

Perturbation Function v(-):
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Lagrange Multiplier:

Linear Continuous Functional o* € Z* is a Lagrange Multiplier for Problem
(P), if there exists X € X such that

(1) £(%) + (@, g(x)) = min {f(x) + (0", g(x)) }
(2) (o, g(x)) =0,

(3) * € KT,

(4) g(x) <k 0

Perturbation Function v(-):

v(z) = inﬁ( {f(x):g(x) <k z}, forallzeZ
Xe
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Lagrange Multiplier:

Linear Continuous Functional o* € Z* is a Lagrange Multiplier for Problem
(P), if there exists X € X such that

(1) £(%) + (@, g(x)) = min {f(x) + (0", g(x)) }
(2) (o, g(x)) =0,

(3) * € KT,

(4) g(x) <k 0

Perturbation Function v(-):

v(z) = inﬁ( {f(x):g(x) <k z}, forallzeZ
Xe

It has been Proved that
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Lagrange Multiplier:

Linear Continuous Functional o* € Z* is a Lagrange Multiplier for Problem
(P), if there exists X € X such that

(1) £(%) + (@, g(x)) = min {f(x) + (0", g(x)) }
(2) (o, g(x)) =0,

(3) * € KT,

(4) g(x) <k 0

Perturbation Function v(-):

v(z) = X|r€1f< {f(x):g(x) <k z}, forallzeZ

It has been Proved that

u* € Z* is a Lagrange Multiplier & —u* € 0v(0)
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Generalized Benders Decomposition:

Refs: Geoffrion, 1971; Geoffrion, 1972; Grossmann, 2002;
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Generalized Benders Decomposition:
Refs: Geoffrion, 1971; Geoffrion, 1972; Grossmann, 2002;
Back to (VOP):
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Generalized Benders Decomposition:

Refs: Geoffrion, 1971; Geoffrion, 1972; Grossmann, 2002;
Back to (VOP):

min  f(x,y)
X7.y

s.t. g(x,y) <k 0,
x € X,y € Y discrete variable,

(VOP)

f is Continuous and f(-,y) is Convex on X
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Generalized Benders Decomposition:
Refs: Geoffrion, 1971; Geoffrion, 1972; Grossmann, 2002;
Back to (VOP):

r)T(]in f(x,y)

(VOP){ st g(x,y) < 0,
x € X,y € Y discrete variable,

f is Continuous and f(-,y) is Convex on X

g is Continuous and g(+,y) is K-convex on X
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Generalized Benders Decomposition:
Refs: Geoffrion, 1971; Geoffrion, 1972; Grossmann, 2002;
Back to (VOP):

min  f(x,y)
X7.y
(VOP){ s.t. g(x,y) <k O,
x € X,y € Y discrete variable,
f is Continuous and f(-,y) is Convex on X
g is Continuous and g(+,y) is K-convex on X

X C E is a Convex and Compact set
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Generalized Benders Decomposition:
Refs: Geoffrion, 1971; Geoffrion, 1972; Grossmann, 2002;
Back to (VOP):

min  f(x,y)
(VOP){ st g(x.y) <k 0.
x € X,y € Y discrete variable,
f is Continuous and f(-,y) is Convex on X
g is Continuous and g(+,y) is K-convex on X
X C E is a Convex and Compact set

Y C D a set with Discrete Variables
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Generalized Benders Decomposition for (VOP)

Let y € Y be Fixed. Consider Primal Problem P(y):

min f(x,y)
P(y){ s.t. g(x,y) <k 0,
x € X,
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Generalized Benders Decomposition for (VOP)

Let y € Y be Fixed. Consider Primal Problem P(y):

min f(x,y)
P(y){ s.t. g(x,y) <k 0,
x € X,

The Associate Dual Problem D(y):

D(y) max [ inf {f(x,y)+ (u"g(x,y))}]

ureK+t
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Generalized Benders Decomposition for (VOP)

Let y € Y be Fixed. Consider Primal Problem P(y):

min f(x,y)
P(y){ s.t. g(x,y) <k 0,
x € X,

The Associate Dual Problem D(y):

D(y) max [ inf {f(x,y)+ (u"g(x,y))}]

ureK+t

The Perturbation Function v, (-) of P(y):
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Generalized Benders Decomposition for (VOP)

Let y € Y be Fixed. Consider Primal Problem P(y):

min f(x,y)
P(y){ s.t. g(x,y) <k 0,
x € X,

The Associate Dual Problem D(y):

D(y) max [ inf {f(x,y)+ (u"g(x,y))}]

ureK+t

The Perturbation Function v, (-) of P(y):

vy(z) = igf({f(x,y) 1g(x,y) <k z}, Vze Z
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Generalized Benders Decomposition for (VOP)

Generalized Benders Decomposition for (VOP)

min 7

yin

st inf {F(xy) + (0 800y <0 Vi=1,-- 0k,
inf(<2:/’g(x7y)> < 07 vl = 17 7.j7
xe ’

yeY,neR.

RMPkJ
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Generalized Benders Decomposition for (VOP)

Generalized Benders Decomposition for (VOP)

min 7

yin

st inf {F(xy) + (0 800y <0 Vi=1,-- 0k,
inf(<2:/’g(x7y)> < 07 vl = 17 7.j7
xe ’

yeY,neR.

RMPkJ

Denote (yk+1,, Nk+1,) optimal solution of RMPXJ.
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Generalized Benders Decomposition for (VOP)

Generalized Benders Decomposition for (VOP)

min 7
ym
s.t.n > inf {f(x,y)+ <”7J7g(xﬂ)’)>}= Vi=1,--- k,
xeX
X|2X<zk,l?g(x7y)> = 07 v ) yJsJ + )

yeY,neR.

RMPk,j+1
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Generalized Benders Decomposition for (VOP)

Generalized Benders Decomposition for (VOP)

min 7
ym
s.t.n > inf {f(x,y)+ <”7J7g(xﬂ)’)>}= Vi=1,--- k,
xeX
X|2X<zk,l?g(x7y)> = 07 v ) yJsJ + )

yeY,neR.

RMPk,j+1

Denote (yk+1,+1,7k+1,j+1) the optimal solution of RMPkJ*1.

Montaz Ali (School of Computational and Algorithms for Non-differentiable MINLP



Thank You!
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