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Structure of the presentation
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Joint work with PhD student Otto Nissfolk and prof. Tapio Westerlund.

 Background

 Convexification and some examples

 Quadratic and semidefinite programming

 Quadratic Convex Reformulation (QCR method)

 Nondiagonal perturbation (NDQCR)

 Numerical experiments



0-1 Quadratic Program (QP)
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A standard 0-1 QP has the form: 

Some applications include: 

 Max-Cut of a graph (unconstrained)

 Knapsack problems (inequality constrained)

 Graph bipartitioning

 Task allocation

 Quadratic assignment problems

 Coulomb glass 

 Gray-scale pattern problems, taixxc instances from QAPLIB

Q, A, B are matrices and q, a, b are vectors of appropriate dimensions.



Convexity
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The following are equivalent (𝑄 = 𝑄𝑇):

 The quadratic function 𝑓 𝑥 = 𝑥𝑇𝑄𝑥 is convex on 𝑅𝑛.

 The matrix 𝑄 is positive semidefinite (psd, 𝑄 ≽ 0).

 All eigenvalues of 𝑄 are non-negative (𝜆𝑖 ≥ 0).

A sufficient condition for convexity: A diagonally dominant matris is psd.

Definition: A matrix 𝑄 is diagonally dominant if

𝑄𝑖𝑖 ≥  

𝑖≠𝑗

𝑄𝑖𝑗 ∀𝑖



Convexification of 0-1 QPs

5Quadratic reformulation

Basic approach: If Q is indefinite, add sufficient large quadratic terms to the 

diagonal and subtract the same amount from the linear terms.

Recall that: 𝑥𝑖 ∈ 0,1 ⇔ 𝑥𝑖
2 = 𝑥𝑖

Example 1

𝑓 𝑥 = 𝑥𝑇 1 3
3 2

𝑥 = 𝑥1
2 + 6𝑥1𝑥2 + 2𝑥2

2

𝑓 𝑥 = 𝑥𝑇 1 3
3 2

𝑥 = 𝑥𝑇 3 3
3 5

𝑥 −
2
3

𝑇

𝑥 = 3𝑥1
2 + 6𝑥1𝑥2 + 5𝑥2

2 − 2𝑥1 − 3𝑥2

Positive 

semidefinite
Indefinite



Convexification of 0-1 QPs
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Example 2: a) Diagonal dominance, b) Minimum eigenvalue, c) Best diagonal 

𝑄 =

1 2 −3 2
2 2 −3 4
−3 −3 2 0
2 4 0 −2

min 𝑥𝑇𝑄𝑥

𝑠. 𝑡. 𝑥 ∈ 0,1 4

a) Diagonal dominance

 𝑄 =

7 2 −3 2
2 9 −3 4
−3 −3 6 0
2 4 0 6

 𝑞 =

6
7
4
8

eig(  𝑄) =

1.66
4.90
6.88
14.56

eig(𝑄) =

−5.17
−1.04
0.95
8.26

min 𝑥𝑇  𝑄𝑥 −  𝑞𝑇𝑥

𝑠. 𝑡. 𝑥 ∈ [0,1]4

𝐨𝐩𝐭𝐢𝐦𝐚𝐥 𝐯𝐚𝐥𝐮𝐞 = −𝟓. 𝟗𝟑

b) Minimum eigenvalue

 𝑄 =

6.17 2 −3 2
2 7.17 −3 4
−3 −3 7.17 0
2 4 0 3.17

 𝑞 =

5.17
5.17
5.17
5.17

eig(  𝑄) =

0
4.13
6.12
13.43

min 𝑥𝑇  𝑄𝑥 −  𝑞𝑇𝑥

𝑠. 𝑡. 𝑥 ∈ [0,1]4
𝐨𝐩𝐭𝐢𝐦𝐚𝐥 𝐯𝐚𝐥𝐮𝐞 = −𝟓. 𝟑𝟒



Convexification of 0-1 QPs
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c) The best diagonal. The QCR method allows computation of the diagonal  

that gives the highest optimal value of the relaxation. 

eig(  𝑄) =

0
1.31
6.71
12.21

min 𝑥𝑇  𝑄𝑥 −  𝑞𝑇𝑥

𝑠. 𝑡. 𝑥 ∈ [0,1]4
𝐨𝐩𝐭𝐢𝐦𝐚𝐥 𝐯𝐚𝐥𝐮𝐞 = −𝟒. 𝟎𝟖

 𝑄 =

2.93 2 −3 2
2 4.28 −3 4
−3 −3 6.83 0
2 4 0 6.20

 𝑞 =

1.93
2.28
4.83
8.20

min 𝑥𝑇𝑄𝑥

𝑠. 𝑡. 𝑥 ∈ 0,1 4
𝐨𝐩𝐭𝐢𝐦𝐚𝐥 𝐯𝐚𝐥𝐮𝐞 = −𝟑

Bounding: −𝟓. 𝟗𝟑 ≤ −𝟓. 𝟑𝟒 ≤ −𝟒. 𝟎𝟖 ≤ −𝟑



Semidefinite relaxation of 0-1 QPs
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𝑋 = 𝑥𝑥𝑇 ↦ 𝑋 − 𝑥𝑥𝑇 ≽ 0 ⟺ 1 𝑥𝑇

𝑥 𝑋
≽ 0

Relaxation into a positive semidefinite

matrix variable

Binary condition:  𝑥𝑖 ∈ 0,1 ⇔ 𝑥𝑖
2 − 𝑥𝑖 = 0 ⇔ 𝑋𝑖𝑖 = 𝑥𝑖

min 𝑄 • 𝑋 + 𝑞𝑇𝑥
𝑠. 𝑡. 𝐴𝑥 = 𝑎

𝐵𝑥 ≤ 𝑏
diag 𝑋 = 𝑥

1 𝑥𝑇

𝑥 𝑋
≽ 0

Semidefinite relaxation:

A quadratic expression in 𝑥 is linear in 𝑋:  𝑥𝑇𝑄𝑥 = 𝑄 • 𝑋 =  𝑖 𝑗𝑄𝑖𝑗𝑋𝑖𝑗



Deriving the dual problem
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Lagrangian relaxation of 0-1 QP:

𝑓 𝑥, 𝜆, 𝜇, 𝛿 = 𝑥𝑇𝑄𝑥 + 𝑞𝑇𝑥 + 𝜆𝑇 𝐴𝑥 − 𝑎 + 𝜇𝑇 𝐵𝑥 − 𝑏 + 

𝑖=1

𝑛

𝛿𝑖(𝑥𝑖
2 − 𝑥𝑖)

= 𝑥𝑇(𝑄 + Diag 𝛿
 𝑄

)𝑥 + (𝑞 + 𝐴𝑇𝜆 + 𝐵𝑇𝜇 − 𝛿)
 𝑞

𝑇
𝑥 −𝜆𝑇𝑎 − 𝜇𝑇𝑏

 𝑐

sup inf 𝑥𝑇  𝑄𝑥 +  𝑞𝑇𝑥 +  𝑐

𝛿, 𝜆, 𝜇 𝑥 ∈ 𝑅𝑛

Lagrangian dual problem:

which equals a semidefinite program

max 𝑡

𝑠. 𝑡.
−𝑡 +  𝑐

1

2
 𝑞𝑇

1

2
 𝑞  𝑄

≽ 0

𝛿 ∈ 𝑅𝑛, 𝜆 ∈ 𝑅𝑚, 𝜇 ∈ 𝑅+
𝑘



The primal and dual
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max 𝑡

𝑠. 𝑡.
−𝑡 +  𝑐

1

2
 𝑞𝑇

1

2
 𝑞  𝑄

≽ 0

𝛿 ∈ 𝑅𝑛, 𝜆 ∈ 𝑅𝑚, 𝜇 ∈ 𝑅+
𝑘

min 𝑄 • 𝑋 + 𝑞𝑇𝑥
𝑠. 𝑡. 𝐴𝑥 = 𝑎

𝐵𝑥 ≤ 𝑏
diag 𝑋 = 𝑥

1 𝑥𝑇

𝑥 𝑋
≽ 0

Solution give optimal values on the multipliers :  𝛿∗, 𝜆∗, 𝜇∗.

These are used to construct the ”best” diagonal perturbation of
matrix 𝑄 according to 

𝑄∗ = 𝑄 + Diag 𝛿∗ .



Strengthening
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Inclusion of constraints may improve bounding quality. There are many ways

to include or construct quadratic constraints.

1) Add new redundant quadratic constraints (some examples)

𝑥𝑖𝑥𝑗 ≥ 0, 𝑥𝑖𝑥𝑗 ≥ 𝑥𝑖 + 𝑥𝑗 − 1, 𝑥𝑖𝑥𝑗 ≤ 𝑥𝑖 , 𝑥𝑖𝑥𝑗 ≤ 𝑥𝑗

2) Combine and multiply existing linear constraints (some examples)

𝑝𝑇𝑥 = 𝑠 ⟹ 𝑥𝑖𝑝
𝑇𝑥 = 𝑥𝑖𝑠 ∀𝑖

𝑝𝑇𝑥 = 𝑠 ⟹ (1 − 𝑥𝑖)𝑝
𝑇𝑥 = (1 − 𝑥𝑖)𝑠 ∀𝑖

 
𝑝𝑇𝑥 = 𝑠

𝑟𝑇𝑥 = 𝑡
⟹ 𝑝𝑇𝑥𝑟𝑇𝑥 = 𝑠𝑡 ⟹ 𝑥𝑇 𝑝𝑟𝑇 𝑥 = 𝑠𝑡

𝐴𝑥 = 𝑎 ⟹ 𝐴𝑥 − 𝑎 2 = 0 ⟹ 𝑥𝑇𝐴𝑇𝐴𝑥 = 𝑎𝑇𝑎



Our strengthening
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Original 0-1 QP Strengthened SDP relaxation

 Multipliers from all quadratic constraints are used to convexify the objective

function so that the lower bound becomes as high as possible.

 Multipliers: 𝛿 ∈ 𝑅𝑛, 𝛼 ∈ 𝑅, 𝑆, 𝑇, 𝑈, 𝑉 ≥ 0



Convexified 0-1 QP problem
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NDQCR method
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NDQCR versus QCR
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Example 3:



NDQCR versus QCR
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Best reformulation – strategy (ii)

Multipliers

Matrices

Convexified QP



17Quadratic reformulation

Boolean least squares

The problem is to identify a binary signal 

𝑥 ∈ 0,1 𝑛 from a collection of noisy

measurements.
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Coulomb glass problem

Given n sites in the plane. k of these sites are filled with electrons. 

Find the configuration that has minimal energy.

Energy = Coulomb interaction + site specific energy

Variables: 𝑥 ∈ 0,1 𝑛 𝑥𝑖 =  
0, if site 𝑖 is empty
1 , if site 𝑖 is filled

min 𝑥𝑇𝑄𝑥 + 𝑞𝑇𝑥

𝑠. 𝑡. 𝑒𝑇𝑥 = 𝑘
𝑥 ∈ 0,1 𝑛

𝑄𝑖𝑗 =  

0, if 𝑖 = 𝑗
1

2𝑟𝑖𝑗
, if 𝑖 ≠ 𝑗

𝑟𝑖𝑗
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NDQCR on Coulomb glass problems (n=50, n=100)

 𝑘 =
𝑛

2
in all experiments

 Constraints 𝑋𝑖𝑗 ≥ 0 and 𝑋𝑖𝑗 ≥

𝑥𝑖 + 𝑥𝑗 − 1 are included for 

indeces corresponding to the 

p% largest elements of Q.

 Even a small fraction of non-

diagonal elements has a large

impact on the total solution 

time.

 2% - 10% non-diagonal 

elements result in fastest

solution times.
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The taixxc instances from QAPLIB

These instances are a special type of QAP problem where the flow matrix F 

is binary and rank-1.

𝐹 = 𝑏𝑏𝑇 where 𝑏 ∈ 0,1 𝑛.

trace 𝐷𝑋𝐹𝑋𝑇 = trace 𝐷𝑋𝑏𝑏𝑇𝑋𝑇 = trace 𝐷𝑋𝑏 𝑋𝑏 𝑇

= trace 𝐷𝑦𝑦𝑇 = trace 𝑦𝑇𝐷𝑦 = 𝑦𝑇𝐷𝑦

The objective function of QAP can be rewritten and simplified using the 

binary rank-1 property:
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NDQCR (Y≥0) versus QCR on tai36c

p =11 QCR NDQCR

CPU time 433 s 15 s

SDP gap 24 % 4 %



22Quadratic reformulation

NDQCR on problem tai64c
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Conclusions

 A technique for non-diagonal perturbation was presented.

 Non-diagonal perturbation was obtained from squared norm constraints

and a set of redundant RLT inequalities.

 Gives tight bounding and fast solution for small to medium sized

problems.

 Full application becomes impossible for large problems.

 The inclusion of just a few RLT inequalities may also have large impact

on the solution time and bounding quality.

Future work: Construct reasonable fast heuristic procedures

to find a good set of inequalities to include.



24

24

Some references on quadratic reformulation
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