OSE SEMINAR 2014

Ridge-Based Methods and Applications to
Spatiotemporal Data

Seppo Pulkkinen

University of Turku, Department of Mathematics and Statistics

ABO, NOVEMBER 14 2014

o
coose X\
" OPTIMIZATION AND Abo Akademi
SYSTEMS ENGINEERING University ,____l ‘




Function Ridges

(a) general function
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(b) density of a point set

A ridge is an elevated region of a function surface passing

through its peaks.

Density ridges correspond to the underlying structure of a point %
set when the observations follow a generative model. 3@)) g B
Oy, &\
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Ridge Definition

A ridge point is a local maximum in the subspace spanned by the
Hessian eigenvectors {v,-(-)},?’:mH corresponding to the d —m

smallest eigenvalues {)\,-(~)},q:m+1.

; d
The eigenvectors {v;(")}i_
greatest negative curvature.

, correspond to the directions of

Definition
Let f: RY - R be a twice differentiable function and let 0 < m < d. A point
x e R4 belongs to the m-dimensional ridge set R;” if

Vf(x)Tvi(x)=0, foralli>m,
/\m-‘rl(x) <0,
A1(x) > Ax(x) > > Ap41(x), if m>0,

where A1(x) > Ap(x) >--- > A4(x) and {v;(x )} , denote the eigenvalues

and the corresponding eigenvectors of sz( ), respectlvely. ﬁ
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Generative Model

The observations are assumed to follow a generative model
X~ f(©)+e¢,

where
> F:R™ > R%is a generating function, m < d,
> O follows some distribution in D C R'™,
> &~ Ng(0,0°).

The above model induces the marginal density

px(x) = Cou | px(x1©=0)p(0)a0
D

with some constant C; 4.
The model can be extended to contain multiple generating
functions. oy
A
Assuming the above model, ridges of the marginal den5|ty can %
be used as an estimate for the generating functions. @ @E
@ @A
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Kernel Density Estimation

In practice, the marginal density px is not known a priori.
However, it can be estimated nonparametrically from the
observations.

Definition

The Gaussian kernel density estimate py obtained by drawing a set of

samples Y = {y,~}’l.\l:1 c RY from a probability density p : R - R is

N
Br()= 1) Kn(x-y), 1)

i=1

where the kernel Kiy : R9 —]0, o[ is the Gaussian function

Ky (x) = ! —EXTH_lx) (2)

@0)H] o3

with a symmetric and positive definite kernel bandwidth matrix H € RAxd,

Existing methods can be used for determining an optimal ()} l;

bandwidth matrix H (e.g. the ks package for R). \© @n
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Successive Ridge Projections: the Linear Case and PCA

When p is a normal density with mean g and symmetric and
positive definite covariance matrix ¥, we have

> Rg ={pu} and Ré = pu+span(vy),

> Vlogp(x) = -X }(x—pu)and V2logp(x) = -x 1.
The first step of the Newton iteration restricted to each
subspace span(Vm, 11, Vim42,---, Vg) yields a ridge point x* € Rpl.
We obtain the principal components of a given point set by . @ @%‘
replacing the mean and covariance with their sample eﬁ" ! ,\

\
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The Nonlinear Case: Differential Equation Formulation

As in the linear case, the prin-
cipal component coordinates of
a point can be obtained by suc-
cessive projections onto lower-
dimensional ridge sets of the un-
derlying density p (or its estimate
PH)-

This gives rise to a nonlinear ex-
tension of PCA that we call KDPCA
(kernel density PCA).

-

Ridge projections can be obtained by seeking for maxima along
curves ., withm=d-1,d-2,...,1, that are solutions to

d
dt

m

Y VimOVilym()

i=1

wogﬁH(ymu))}:o, £0, 5
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Multiple Generating Functions

It is straightforward to extend the model to multiple generating
functions.
Difficulties arise in the presence of intersections.
The conditions defining a boundary of a ridge set Rg’ are:
> Aj(x) = Aj(x) for some i #j suchthat 0 <i<j<m
> A; >0 for somei>m.
These conditions need to be tested in the ridge tracing

algorithm (also third derivative conditions are needed because We re’ ‘@ ;

computing derivatives of eigenvectors).

, \
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Subspace-Constrained Trust Region Newton Method

Ridge projections are done by using a trust region Newton
method as the corrector in a predictor-corrector method.

As in the classical trust region method (Moré and Sorensen), the
idea is to maximize the quadratic model

N N 1 N
Q«(s) = log pr(xi) + Vlog py(xk)"s + §5TV2 log pH(xk)s.

At each iteration, the method solves the subspace-constrained
trust region subproblem

max Qu(s) {IISII <Ay

S € Sm(Xk)r
where
Sm(xk) =span(vmi1(Xk), Vimaa(Xk)s- - va(xk)).

In addition to finding maxima, the method finds m-dimensional &
ridge points. It does an approximate projection in a curvilinear, @ p

coordinate system. %é?} @E
RS ATRIN
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Comparison to the mean-shift method

So far, the mean-shift method has been the standard approach
to finding maxima and ridges of kernel densities.
The mean-shift iteration is defined as

Xk+1 = Xk —|—Sk, where Sk:fH(Xk)_Xk

and

:I]\_l )
ZKH(X—M)

This fixed-point iteration has (sub)linear convergence rate.

The mean-shift method can also be constrained to an

eigenvector subspace.

On the other hand, the proposed Newton-based method: %
> has superlinear convergence rate. %f‘

By
> can be proven to converge to a ridge point. %gg}, @
NSNS
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Dimensionality Reduction with KDPCA

Task: Find a low-dimensional representation of a point set so
that its structure is preserved.

Example: a point set sampled from a two-dimensional manifold
with noise and the coordinates recovered by using KDPCA.

PCH2
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0.0
PC#1

(a) three-dimensional point set (b) two-dimensional coordlnates & ’i
e @A ‘E S
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Application of KDPCA to Time Series Data (KDSSA)

The phase space trajectory of a time series x = (xl,xz,...,xn) is

given by
X1 X2 X3 000 XL
X2 X3 Xq X4l
YL = X3 X4 X5 X 42 |,
Xp—L+1 Xp-L+2 Xp-L4+3 Xn

where L is a user-supplied time window length.

In the classical singular spectrum analysis) (SSA), the linear
PCA is applied to the trajectory matrix.

KDPCA can be applied to the trajectory matrix as well. This gives
rise to the KDSSA method (kernel density singular spectrum

analysis).
e

, \
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Application of KDPCA to Time Series Data (KDSSA)
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KDSSA can identify closed loops in phase space that are typical
for quasiperiodic time series (periodic time series with noise).
It can be used for extraction of periodic components from such &

time series, which is not possible by using the linear SSA. (I =
O%Y, &
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Extraction of Curvilinear Structures from Spatial Data

Task: Find the curvilinear structures from a low-dimensional but
large spatial point set (> 10000 samples).

Example: Identification of fault lines from an earthquake
catalog.
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Conclusions

Main contributions so far:
A rapidly converging trust region Newton method for projecting
a point onto a ridge of the underlying density.

A robust and efficient method for finding curvilinear structures
for noisy data.

A novel nonlinear extension of the linear principal component
analysis based on kernel density ridges.

S\

§
o B
\\\@%@éﬂg



1617

Literature

A generative model and a generalized trust region Newton
method for noise reduction.
Computational Optimization and Applications, 57(1):129-165

Ridge-based method for finding curvilinear structures from noisy
data.

Computational Statistics and Data Analysis, 82:89-109

Nonlinear kernel density principal component analysis with
application to climate data.
Statistics and Computing, to appear \

B

\\\@% 4

e
2 %‘



1717

The end of the presentation

Thank you for listening!
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The end of the presentation

Thank you for listening!

Questions?
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