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Function Ridges

(a) general function (b) density of a point set

I A ridge is an elevated region of a function surface passing
through its peaks.

I Density ridges correspond to the underlying structure of a point
set when the observations follow a generative model.
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Ridge Definition

I A ridge point is a local maximum in the subspace spanned by the
Hessian eigenvectors {v i (·)}di=m+1 corresponding to the d −m
smallest eigenvalues {Ýi (·)}di=m+1.

I The eigenvectors {v i (·)}di=m+1 correspond to the directions of
greatest negative curvature.

Definition

Let f :�d →� be a twice differentiable function and let 0 ≤m < d . A point
x ∈�d belongs to the m-dimensional ridge set Rm

f if

∇f(x)Tv i (x) = 0, for all i >m ,

Ým+1(x) < 0,

Ý1(x) > Ý2(x) > · · · > Ým+1(x), if m > 0,

where Ý1(x) ≥ Ý2(x) ≥ · · · ≥ Ýd (x) and {v i (x)}di=1 denote the eigenvalues
and the corresponding eigenvectors of ∇2f(x), respectively.
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Generative Model

I The observations are assumed to follow a generative model

X ∼ f(Ê)+ ê,

where
. f :�m →�

d is a generating function, m < d ,
. Ê follows some distribution in D ⊂�

m ,
. ê ∼Nd (0,ã

2).

I The above model induces the marginal density

pX (x) = Cã,d

∫
D

pX (x |Ê= Ú)p(Ú)dÚ

with some constant Cã,d .
I The model can be extended to contain multiple generating

functions.
I Assuming the above model, ridges of the marginal density can

be used as an estimate for the generating functions.
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Kernel Density Estimation

I In practice, the marginal density pX is not known a priori.
However, it can be estimated nonparametrically from the
observations.

Definition

The Gaussian kernel density estimate p̂H obtained by drawing a set of
samples Y = {y i }Ni=1 ⊂�

d from a probability density p :�d →� is

p̂H (x) =
1
N

N¼
i=1

KH (x −y i ), (1)

where the kernel KH :�d →]0,∞[ is the Gaussian function

KH (x) =
1√

(2á)d |H |
exp

(
−1

2
x
T
H
−1
x

)
(2)

with a symmetric and positive definite kernel bandwidth matrix H ∈�d×d .

I Existing methods can be used for determining an optimal
bandwidth matrix H (e.g. the ks package for R).
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Successive Ridge Projections: the Linear Case and PCA

I When p is a normal density with mean Þ and symmetric and
positive definite covariance matrix Î, we have

. R0
p = {Þ} andR1

p = Þ+ span(v1),

. ∇ logp(x) = −Î−1(x −Þ) and ∇2 logp(x) = −Î−1.
I The first step of the Newton iteration restricted to each

subspace span(vm+1,vm+2, . . . ,vd ) yields a ridge point x∗ ∈ Rm
p .

I We obtain the principal components of a given point set by
replacing the mean and covariance with their sample estimates.



7 | 17

The Nonlinear Case: Differential Equation Formulation

I As in the linear case, the prin-
cipal component coordinates of
a point can be obtained by suc-
cessive projections onto lower-
dimensional ridge sets of the un-
derlying density p (or its estimate
p̂H ).

I This gives rise to a nonlinear ex-
tension of PCA that we call KDPCA
(kernel density PCA).

I Ridge projections can be obtained by seeking for maxima along
curves Õm , with m = d −1,d −2, . . . ,1, that are solutions to

d
dt


 m¼
i=1

v i (Õm(t))v i (Õm(t))T
∇ log p̂H (Õm(t))

= 0, t ≥ 0,

Õm(0) = x0.
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Multiple Generating Functions
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I It is straightforward to extend the model to multiple generating
functions.

I Difficulties arise in the presence of intersections.
I The conditions defining a boundary of a ridge setRm

p are:
. Ýi (x) = Ýj (x) for some i , j such that 0 ≤ i < j ≤m
. Ýi ≥ 0 for some i >m .

I These conditions need to be tested in the ridge tracing
algorithm (also third derivative conditions are needed because we are
computing derivatives of eigenvectors).
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Subspace-Constrained Trust Region Newton Method

I Ridge projections are done by using a trust region Newton
method as the corrector in a predictor-corrector method.

I As in the classical trust region method (Moré and Sorensen), the
idea is to maximize the quadratic model

Qk (s) = log p̂H (xk )+∇ log p̂H (xk )
T
s +

1
2
s
T∇2 log p̂H (xk )s .

I At each iteration, the method solves the subspace-constrained
trust region subproblem

max
s

Qk (s) s.t.

{
‖s‖ ≤ Ék ,

s ∈ Sm(xk ),

where

Sm(xk ) = span(vm+1(xk ),vm+2(xk ), . . . ,vd (xk )).

I In addition to finding maxima, the method finds m-dimensional
ridge points. It does an approximate projection in a curvilinear
coordinate system.
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Comparison to the mean-shift method

I So far, the mean-shift method has been the standard approach
to finding maxima and ridges of kernel densities.

I The mean-shift iteration is defined as

xk+1 = xk +sk , where sk = fH (xk )−xk

and

fH (x) =

N¼
i=1

KH (x −y i )y i

N¼
i=1

KH (x −y i )

.

I This fixed-point iteration has (sub)linear convergence rate.
I The mean-shift method can also be constrained to an

eigenvector subspace.
I On the other hand, the proposed Newton-based method:

. has superlinear convergence rate.

. can be proven to converge to a ridge point.
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Dimensionality Reduction with KDPCA

I Task: Find a low-dimensional representation of a point set so
that its structure is preserved.

I Example: a point set sampled from a two-dimensional manifold
with noise and the coordinates recovered by using KDPCA.
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Application of KDPCA to Time Series Data (KDSSA)

I The phase space trajectory of a time series x = (x1,x2, . . . ,xn) is
given by

Yx ,L =



x1 x2 x3 · · · xL
x2 x3 x4 · · · xL+1
x3 x4 x5 · · · xL+2
...

...
...

. . .
...

xn−L+1 xn−L+2 xn−L+3 · · · xn


,

where L is a user-supplied time window length.

I In the classical singular spectrum analysis) (SSA), the linear
PCA is applied to the trajectory matrix.

I KDPCA can be applied to the trajectory matrix as well. This gives
rise to the KDSSA method (kernel density singular spectrum
analysis).
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Application of KDPCA to Time Series Data (KDSSA)
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(b) the original time series and its first
KDSSA and SSA components

I KDSSA can identify closed loops in phase space that are typical
for quasiperiodic time series (periodic time series with noise).

I It can be used for extraction of periodic components from such
time series, which is not possible by using the linear SSA.
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Extraction of Curvilinear Structures from Spatial Data

I Task: Find the curvilinear structures from a low-dimensional but
large spatial point set (> 10000 samples).

I Example: Identification of fault lines from an earthquake
catalog.
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Conclusions

Main contributions so far:

I A rapidly converging trust region Newton method for projecting
a point onto a ridge of the underlying density.

I A robust and efficient method for finding curvilinear structures
for noisy data.

I A novel nonlinear extension of the linear principal component
analysis based on kernel density ridges.
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The end of the presentation

Thank you for listening!

Questions?
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