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CONTENTS OF THE TALK

The extended supporting hyperplane (ESH) algorithm is a
method for solving convex MINLP problems to global optimality
by solving sequences of LP and MILP problems.

The supporting hyperplane optimization toolkit (SHOT) is a
new solver for convex MINLP:

» Incorporates the ESH algorithm and primal heuristics.

» To be released as an open source COIN-OR project

Results from an extensive benchmark of SHOT against several
other MINLP solvers is provided.
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THE EXTENDED SUPPORTING
HYPERPLANE ALGORITHM



THE EXTENDED SUPPORTING HYPERPLANE ALGORITHM

A new method for global optimization of convex MINLP problems.

Supporting hyperplanes describe the nonlinear feasible set:

» utilizes a line search procedure to find the generation point

» an interior point is required for the line search

Similar ideas as presented in:

Veinott Jr. A. F., The supporting hyperplane method for unimodal

programming, Operations Research, Vol. 15, pp. 147−152, 1967

The ESH algorithm and the SHOT solver is described in:

Kronqvist J., Lundell A. and Westerlund T., The extended supporting

hyperplane algorithm for convex MINLP problems, Journal of Global

Optimization, accepted 2015
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THE MINLP PROBLEM SCOPE

The ESH algorithm solves convex MINLP problems of the type

find x∗ ∈ argmin
x∈C∩L∩Y

cTx (P)

where x = [x1, x2, . . . , xN]T belongs to the
compact set

X = {x | xi ≤ xi ≤ xi, i = 1, . . . ,N} ⊂ Rn,

the feasible region is defined by C ∩ L ∩ Y

C = {x | gm(x) ≤ 0, m = 1, . . . ,M, x ∈ X}
L = {x |Ax ≤ a, Bx = b, x ∈ X}
Y = {x | xi ∈ Z, i ∈ IZ, x ∈ X}

and C is a convex set.
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BREAKDOWN OF THE ESH ALGORITHM

Interior point search step

Obtain a feasible, relaxed interior point (satisfying C) by solving a NLP problem.

LP step (optional)

Solve simple LP problems (initially in X ∩ L) to obtain an initial overestimating
linear set.

MILP step

Solve MILP problems to find the optimal solution to (P).
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INTERIOR POINT SEARCH

x1

x2

If an interior point is not given, obtain a feasible, relaxed interior
point (satisfying all the nonlinear constraints in C) by solving a

NLP problem.
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LP STEP (OPTIONAL)

x1

x2

Solve simple LP problems and conduct a line search procedure to
obtain supporting hyperplanes giving a first linear relaxation of

the convex set C.
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MILP STEP

x1

x2

Finally include the integer requirements and solve MILP problems
using a corresponding procedure to find the optimal solution to

(P).
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THE SUPPORTING HYPERPLANE
OPTIMIZATION TOOLKIT SOLVER



THESUPPORTINGHYPERPLANEOPTIMIZATIONTOOLKITSOLVER

SHOT is an implementation of the ESH algorithm in C++ together
with primal heuristics

» utilizes several COIN-OR subprojects:
Optimization Services (OS), Ipopt, CBC

» uses CPLEX, Gurobi, CBC for solving subproblems

» uses Ipopt for finding the interior point (will also include the
modified Kelley’s method)

SHOT will be released as an open source solver in COIN-OR.
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FILE FORMATS SUPPORTED

SHOT reads problems in OSiL (Optimization Services instance
Language) format and NL format.
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FILE FORMATS SUPPORTED

SHOT reads problems in OSiL (Optimization Services instance
Language) format and NL format.

Options are specified in OSoL (Optimization Services options
Language) format.

Results are provided in OSrL (Optimization Services results
Language) format.

OSiL, OSoL and OSrL are XML-based and part of the Optimization
Services project.
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DUAL AND PRIMAL SOLUTIONS

A dual solution provides the best known
lower bound on the objective value:

» Belongs to the relaxed set Ωk.

» Provided by optimal solutions to the
LP/MILP subproblems.

A primal solution provides the best
known integer-feasible solution to the
MINLP problem:

» Belongs to the feasible set C ∩ L ∩ Y.
» Provided by primal heuristics.
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DUAL SOLUTIONS (LOWER BOUND)

The dual solutions to the MINLP problem is given as the solutions
to the LP/MILP subproblems.

» Only valid if the problems are solved to optimality
» LP solutions valid if found
» MILP solutions valid only if flagged optimal by the subsolver

Many MILP solvers support a solution pool,
i.e., can return several feasible solutions

» these can be used to create more
hyperplanes in each iteration

BUT… Too many hyperplanes may make each subsequent iteration
computationally more expensive.
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PRIMAL SOLUTIONS (UPPER BOUND)

Several techniques are used to find primal solutions:

» If points in the MILP solution pool are also in C these are
primal solutions.

» Fix the integer-variables to the integer-valid solution and
solve an NLP problem.

The primal solutions can be used for warm starts in the MILP
solver as starting points or cut off values on the objective.

Future work

» Include more primal heuristics in SHOT, e.g., based on line searches.
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PRIMAL SOLUTIONS FROM THE MILP SOLUTION POOL

Several parameters available in the MILP solver that determine
the returned solutions in the solution pool

MIPEmphasis, Probe, SolnPoolGap, SolnPoolIntensity…

It is also possible to use the populate functionality of the MILP
solvers to find additional solutions.

» Makes the solution process nondeterministic in many cases if
time limit is used in subsolver.

Often it is better to obtain points with ‘bad’
objective values in the linear relaxation for
the primal solutions.
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PRIMAL SOLUTIONS FROM SOLVING NLP PROBLEMS

To obtain a primal solution, it is
possible to fix the integer-values of
an integer-feasible solution (not
necessarily in C ∩ L) and solve an
NLP problem.

The NLP problem is not always feasible!

In SHOT, Ipopt is used to solve the NLP problem:

» Strategy executed at a specific iteration or time interval

» If the solution is on the boundary of the feasible region or
outside (to an ϵ tolerance), a supporting hyperplane is
generated.
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TERMINATION CRITERIA IN SHOT

Absolute or relative objective duality gap

|DB− PB| ≤ ϵabs
|DB− PB|

10−10 + |PB|
≤ ϵrel

where DB and PB are the dual and primal objective values

Constraint feasibility tolerance

max
m
gm(xkMILP) ≤ ϵMILP

Iteration or time limit reached
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QUADRATIC AND NONLINEAR OBJECTIVE FUNCTIONS

Normally, a nonlinear objective function f(x) is rewritten as a
constraint

f(x)− µ ≤ 0

and the new objective is to minimize the auxiliary variable µ.

Many MILP solvers can directly solve MIQP problems:

» Then f(x) = xTQx+ cTx, where Q positive semidefinite.

» Gives the exact objective instead of a linearization.

Quadratic constraints can also be handled by some solvers.

» Numerical issues may lead to trouble with proving
semidefiniteness.

» Not always more effective than using the ESH algorithm for
these constraints.

19
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PERFORMANCE OF SHOT

SHOT was tested on all 333 MINLP instances classified
as convex in the MINLP Library 2:

» Number of variables in the problems 3− 107 223 (mean 999).

» Largest number of discrete variables in a problem is 1500.

» All benchmarks performed on Linux-based 64 bit computer (Intel
Xeon 3.6 GHz, four physical and eight logical cores) with 32 GB
RAM. Subsolvers used were CPLEX 12.6.1 and IPOPT 3.11.7.

Solution strategy

» ϵabs = ϵrel = 0.001, ϵMILP = 10−5, ϵLP = 0.001, KLP = 300

» maximal solution pool size: 10

» quadratic objective functions passed on to subsolver

» quadratic constraints regarded as general nonlinear

20
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PERFORMANCE OF SHOT
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A performance profile of the number of problem instances solved by
SHOT to an objective duality gap≤ 1% as calculated by PAVER 2.
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IMPACT OF USING THE QUADRATIC OBJECTIVE STRATEGY
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SHOT with MILP subsolver

A performance profile of the number of problem instances solved by
SHOT to an objective duality gap≤ 1%with a MIQP or MILP subsolver.
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SOLUTION LIMIT STRATEGY

It is possible to set the number of feasible solutions to find before
terminating the MILP/MIQP subsolver.

Can be used to speed up the initial MILP iterations:

» Optimal solution of intermediate subproblems not required.

» Reduces solution time significantly in many cases.

» If no constraints are added to the subproblem, the solution limit
can be increased without rebuilding the branching tree.

Solution limit strategy

1. Initially set SOLLIM = 1.

2. Solve MILP/MIQP subproblem and obtain solution x.

3. Terminate if x is MILP optimal and ESH termination criterion fulfilled.

4. Increase SOLLIM and goto step 2 if x is MILP optimal and maxm gm(x) ≤ ϵSL.

5. Add supporting hyperplanes and goto step 2.
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SOLUTION LIMIT STRATEGY IMPACT
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Performance profiles of the number of problem instances solved by
SHOT to an objective duality gap≤ 1%with or without an increasing
solution limit strategy.
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LP RELAXATION STRATEGY

Initially integer-relaxed MILP/MIQP problems, i.e., LP/QP
problems, can be solved:

+ Integer-relaxed problems are much faster to solve.

– For some problems the hyperplanes generated may provide a
bad relaxation.

– Hyperplanes generated may reduce overall performance for
large problems.

Future work

» Investigate adding these supporting hyperplanes as lazy constraints.

25



LP RELAXATION STRATEGY

Initially integer-relaxed MILP/MIQP problems, i.e., LP/QP
problems, can be solved:

+ Integer-relaxed problems are much faster to solve.

– For some problems the hyperplanes generated may provide a
bad relaxation.

– Hyperplanes generated may reduce overall performance for
large problems.

Future work

» Investigate adding these supporting hyperplanes as lazy constraints.

25



LP RELAXATION STRATEGY IMPACT
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Performance profiles of the number of problem instances solved by
SHOT to an objective gap≤ 1%with or without a strategy for solving
integer-relaxed problems.
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BENCHMARKS AGAINST OTHER MINLP
SOLVERS



BENCHMARKS AGAINST OTHER SOLVERS

The following MINLP solvers available in GAMS 24.4.1 were used:

» AlphaECP (with convex strategy)

» ANTIGONE

» BARON

» BONMINH (with recommended convex strategy, B-Hyb)

» DICOPT

» SBB

» SCIP (with convex strategy)

CPLEX and CONOPT were used as subsolvers and the time limit
per problem was 900 s.

The same problem set as before was used, i.e., all 333 convex
MINLP problems in MINLPLib 2.

The total computational time for all solvers was about 150 h.
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REASONS FOR TERMINATION
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The termination statuses for the solvers as provided by PAVER 2. Note
that a the solution can be optimal even though a limit (e.g., time) has
been reached, the solver has simply not proven optimality.

29



PRIMAL AND DUAL SOLUTION GAPS
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reported optimal solution available in MINLPLib 2.
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PERFORMANCE PROFILE
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A performance profile of the number of problem instances solved to an
objective duality gap≤ 1%.
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CONCLUDING REMARKS

The ESH algorithm is a new method for convex MINLP.

» A journal paper in Journal of Global Optimization will be
available online very soon.

SHOT is an implementation of the ESH algorithm together with
primal heuristics.

» SHOT will be released as an open source
solver in COIN-OR (hopefully) during 2015.

Future research and development

» Investigate how to best select the interior point

» Improve handling of nonlinear objective functions

» Include the αSGO framework for global optimization of
nonconvex MINLP problems
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