Optimal neurophysiological parameters in neuromuscular electrical stimulation in the treatment of dysphagia in multiple sclerosis – a pilot study

Leonie Ruhaak¹,², MSc, Joke Geytenbeek² PhD, Caroline Bruggeman¹, BSc, Hans Bogaardt³ PhD, Vincent de Groot² MD PhD

¹Nieuw Unicum, The Netherlands.
²Department of Rehabilitation VU University Medical Center, The Netherlands.
³University of Sydney, Australia.
Treatment of dysphagia in MS

• Langmore & Pisegna (2015):
 • Evidence for support of swallowing exercises is lacking

• Systematic review of Alali, Ballard & Bogaardt (2016):
 • Limited evidence of dysphagia treatment in MS
 • Some positive results for neuromuscular electrical stimulation and botuline toxin in MS

• tDCS of pharyngeal motor cortex (Restivo et al., 2019)
 • Significant improvement in penetration/aspiration

• Pilot RCT traditional dysphagia therapy in MS (Tarameshlu et al., 2019)
 • Both traditional therapy and posture/diet modifications positive short term effect
 • In traditional therapy group improvement maintained after 6 weeks
Neuromuscular electrical stimulation

Goal is optimal hyoid displacement
Explorative study

• Aim:
To determine the optimal electrode placement and stimulation characteristics of NMES in the treatment of dysphagia in MS
Explorative study

• Inclusion criteria:
 • >18 years of age
 • Diagnosis MS
 • Dysphagia including reduced laryngeal elevation (diagnosed with FEES)

• Exclusion criteria:
 • Other neurological disorder
 • Significant cognitive deficits leading to not being able to give feedback on sensing stimulation or pain
Explorative study

- Clinical data:
 - Type of MS
 - Disease duration
 - EDSS
 - BMI
 - Ultrasonographic measurements
Explorative study

- Parameters:
 - Wave form (Vital Stim vs Tense Current)
 - Electrode placement (suprahyoid vs supra + infrahyoid)
 - Flow direction of the current (cross-section vs longitudinal)
 - Intensity (contraction threshold vs maximal tolerable)
 - Consistency (water vs yoghurt)

- Measured with ultrasonography
 - Distance between mental spine of mandibula and hyoid bone

Source: Macrae et al (2012)
Explorative study

Preliminary results

- Demographic data:

<table>
<thead>
<tr>
<th></th>
<th>Patients (n = 27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (male)</td>
<td>15 (55.6%)</td>
</tr>
<tr>
<td>Age (years) – mean; range</td>
<td>58.81; 36-74</td>
</tr>
<tr>
<td>MS type</td>
<td></td>
</tr>
<tr>
<td>• PP MS</td>
<td>12 (44.4%)</td>
</tr>
<tr>
<td>• SP MS</td>
<td>12 (44.4%)</td>
</tr>
<tr>
<td>• Unknown</td>
<td>3 (11.1%)</td>
</tr>
<tr>
<td>Disease duration (years) – mean; range</td>
<td>24.15; 3-74</td>
</tr>
<tr>
<td>EDSS – median; range</td>
<td>7.5; 5.0-8.5</td>
</tr>
<tr>
<td>BMI – mean; range</td>
<td>26.08; 17.7-36.9</td>
</tr>
</tbody>
</table>
Explorative study

Preliminary results
• Ultrasound measurements:

No stimulation

Stimulation
Explorative study

Preliminary results

• Ultrasound measurements:

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyoid Mandibula</td>
<td>54.056</td>
<td>6.6455</td>
<td>.3474</td>
</tr>
<tr>
<td>rest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMES Hyoid</td>
<td>50.617</td>
<td>7.1110</td>
<td>.3717</td>
</tr>
<tr>
<td>Mandibula rest</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Paired samples t-test: p= 0.00
Explorative study

Preliminary results:

- Ultrasound measurements:

 - Mixed model analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>3.126893</td>
<td>.824532</td>
<td>3.792</td>
<td>.001</td>
<td>1.448127</td>
<td>4.805658</td>
</tr>
<tr>
<td>[NMES_placement=1]</td>
<td>.323057</td>
<td>.303737</td>
<td>1.064</td>
<td>.288</td>
<td>-.274395</td>
<td>.920509</td>
</tr>
<tr>
<td>[NMES_placement=2]</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[NMES_flow_direction=1]</td>
<td>2.049834</td>
<td>.300492</td>
<td>6.822</td>
<td>.000</td>
<td>1.458759</td>
<td>2.640908</td>
</tr>
<tr>
<td>[NMES_flow_direction=2]</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[NMES_type=1]</td>
<td>-.086235</td>
<td>.299990</td>
<td>-.287</td>
<td>.774</td>
<td>-.676321</td>
<td>.503852</td>
</tr>
<tr>
<td>[NMES_type=2]</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>[NMES_intensity_point=1]</td>
<td>-1.519405</td>
<td>.301036</td>
<td>-5.047</td>
<td>.000</td>
<td>-2.111550</td>
<td>-.927260</td>
</tr>
<tr>
<td>[NMES_intensity_point=2]</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
Explorative study

Conclusion

• Stimulation protocol:
 • Suprahyoidal electrode placement;
 • Cross-sectional flow direction;
 • TENS current (30 Hz and 200μs) at maximum tolerated level.

• Guidelines of American College of Sports Medicine for prescription of strengthening exercises

• Effect of NMES in treatment of dysphagia in MS should be investigated in RCT study
Future research

• RCT into effectiveness of neuromuscular electrical stimulation in dysphagia in MS
 • Multicenter!!