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CONTENTS OF THE TALK

The extended cutting plane (ECP) algorithm.

The extended supporting hyperplane (ESH) algorithm:

− Solves sequences of approximative LP and MILP problems.

− Cutting planes are replaced with supporting hyperplanes
generated on the boundary of the feasible set.

− Two LP preprocessing steps are utilized to quickly get a tight
linear relaxation of the feasible set.

Comparison of a COIN-OR ESH implementation to other solvers.
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THE ECP ALGORITHM



THE EXTENDED CUTTING PLANE ALGORITHM

The ECP algorithm is applicable to generally convex mixed-integer
nonlinear programming (MINLP) problems.

Solves MILP relaxations of the MINLP problem where the
nonlinear constraints are approximated using cutting planes.

Implemented, e.g., in the AlphaECP solver in GAMS and available
on the NEOS server.
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AN ILLUSTRATIVE EXAMPLE
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minimize cTx = −x1 − x2
subject to g1(x1, x2) = 0.15(x1 − 8)2 + 0.1(x2 − 6)2 + 0.025ex1x−2

2 − 5 ≤ 0

g2(x1, x2) = 1/x1 + 1/x2− x0.51 x
0.5
2 + 4 ≤ 0

2x1 − 3x2 − 2 ≤ 0

1 ≤ x1 ≤ 20, 1 ≤ x2 ≤ 20, x1 ∈ R, x2 ∈ Z.
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AN ILLUSTRATIVE EXAMPLE

In each iteration k of the ECP algorithm a MILP
problem is solved to obtain the solution point
(xk1, x

k
2).

Select the constraint with the largest error
i = argmax gi(xk1, x

k
2) and generate a cutting plane

gi(xk1, x
k
2) +∇gi(xk1, xk2)T(x− xk1, x− xk2) ≤ 0.

If the solution of the MILP problem is feasible for
the MINLP problem i.e.,

gi(xk1, x
k
2) ≤ ϵ ∀i = 1, 2,

the optimal solution has been found.
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AN ILLUSTRATIVE EXAMPLE

To solve the problem with the ECP algorithm (ϵ = 0.001) it takes 17
iterations (17 MILP problems solved to optimality).

How can we improve performance?
Generate cutting planes on the boundary of the feasible set!
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THE ESH ALGORITHM



THE EXTENDED SUPPORTING HYPERPLANE ALGORITHM

A new, stable and efficient algorithm for solving convex MINLP
problems to global optimality.

Cutting planes replaced with supporting hyperplanes. Utilize a
line search procedure to find the generation point. An interior
point is required for the line search.

Similar ideas as presented in:
The supporting hyperplane method for unimodal programming, Veinott Jr. A. F.,

Operations Research, Vol. 15, pp. 147−152, 1967

The ESH algorithm is briefly described in:
An extended supporting hyperplane algorithm for convex MINLP problems,

Lundell A., Kronqvist J. and Westerlund T. Proceedings of XII Global

Optimization Workshop, pp. 21−24, 2014
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THE MINLP PROBLEM SCOPE

The ESH algorithm solves convex MINLP problems of the type

x∗ = argmin
x∈C∩L∩Y

cTx (P)

where x = [x1, x2, . . . , xN]T belongs to the compact set

X = {x | xi ≤ xi ≤ xi, i = 1, . . . ,N} ⊂ Rn,

the feasible region is defined by C ∩ L ∩ Y, where

C = {x | gm(x) ≤ 0, m = 1, . . . ,M, x ∈ X}
L = {x |Ax ≤ a, Bx = b, x ∈ X}
Y = {x | xi ∈ Z, i ∈ IZ, x ∈ X}

and C is a convex set.
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BREAKDOWN OF THE ESH ALGORITHM

NLP step

Obtain a feasible, relaxed interior point (satisfying C) by solving a NLP problem.

LP1 step (optional)

Solve simple LP problems (initially in X) to obtain supporting hyperplanes.

LP2 step (optional)

As in LP1 but also include the linear constraints in L.

MILP step

Solve MILP problems to find the optimal solution to (P).
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NLP STEP

− A point in C is required as an endpoint for the line searches.

− Assuming (P) has a solution, the internal point can be
obtained from the NLP problem:

x̃NLP = argmin
x∈X

F(x), (P-NLP)

where F(x) := max
m=1,...,M

{gm(x)}.

− F is convex since it is the maximum of convex functions.

− (P-NLP) may be nonsmooth (if M > 1) even if gm is smooth.

− The point x̃NLP need not be optimal but then fulfill
F(x̃NLP) < 0.
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LP1 STEP

− Starting from k = 1, Ω0 = X, the problem

x̃kLP = argmin
Ωk−1

cTx (P-LP1)

is repeatedly solved, and supporting hyperplanes (SHs)

lk := F(x
k) +∇F(xk)T(x− xk) ≤ 0

are generated and added to Ωk.

− A point xk is obtained by a line search for F(xk) = 0 between
x̃NLP and the solution to (P-LP1) x̃kLP:

xk = λx̃NLP + (1− λ)x̃kLP, λ ∈ [0,1].

− If not F(x̃kLP) < ϵLP1 or a maximum number of SHs have been
generated, then k is increased and (P-LP1) resolved.
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LP2 STEP

− This step is otherwise identical to LP1, with the exception
that the linear constraints in L are now also included, i.e.,

x̃kLP = argmin
Ωk−1∩L

cTx (P-LP2)

− (P-LP2) is repeatedly solved until F(x̃kLP) < ϵLP2 or a
maximum number of SHs have additionally been generated.

− In many cases the LP1 step may be omitted.
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MILP STEP

− Finally, in order to also fulfill the integer requirements of
problem (P), a MILP step is performed.

− This step is similar to LP2, but the integer requirements in Y
are also included, i.e.,

x̃kMILP = argmin
Ωk−1∩L∩Y

cTx. (P-MILP)

− (P-MILP) is repeatedly solved until F(x̃kMILP) < ϵMILP.

− Intermediate (P-MILP) problems do not need to be solved to
optimality, but in order to guarantee an optimal solution of
(P), the final MILP solution must be optimal.

17
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THE ILLUSTRATIVE EXAMPLE REVISITED
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minimize cTx = −x1 − x2
subject to 0.15(x1 − 8)2 + 0.1(x2 − 6)2 + 0.025ex1x−2

2 − 5 ≤ 0

1/x1 + 1/x2− x0.51 x
0.5
2 + 4 ≤ 0

2x1 − 3x2 − 2 ≤ 0

1 ≤ x1 ≤ 20, 1 ≤ x2 ≤ 20, x1 ∈ R, x2 ∈ Z
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NLP STEP − FIND AN INTERIOR POINT

x̃NLP = argmin
(x1,x2)∈X

F(x1, x2),

where F(x1, x2) := max{g1(x1, x2), g2(x1, x2)}.

− The solution can be found using a
suitable NLP solver

− Not required to be the optimal point

− The optimal point here is (7.45, 8.54)
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LP1-STEP − ITERATION 1

− Assume initially that Ω0 = X.

− k = 1, solve LP in Ω,

x̃kLP = argmin
Ωk−1

cTx.
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− Do line search
xk = λx̃NLP + (1− λ)x̃kLP.

− Generate supporting hyperplane in xk and add to Ω.
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LP1-STEP − ITERATION 2

− Ω1 = {x|l1(x) ≤ 0, x ∈ X}.

l1(x) = 3.26x1 + 0.313x2 − 33.9

− k = 2, solve LP in Ω,

x̃kLP = argminΩk−1
cTx.

5 10 15 20

5

10

15

20

− Do line search xk = λx̃NLP + (1− λ)x̃kLP.

− Generate supporting hyperplane in xk and add to Ω.
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LP1-STEP − ITERATION 3

− Ω2 = {x|lj(x) ≤ 0, j ∈ {1, 2}, x ∈ X}
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− k = 3, solve LP in Ω,

x̃kLP = argminΩk−1
cTx.

− Do line search, generate supporting hyperplane and add to Ω.

− Terminate LP1-step since F(x̃kLP) < ϵLP1.

22



LP1-STEP − ITERATION 3

− Ω2 = {x|lj(x) ≤ 0, j ∈ {1, 2}, x ∈ X}

l1(x) = 3.26x1 + 0.313x2 − 33.9

l2(x) = 0.332x1 + 1.30x2 − 19.2

5 10 15 20

5

10

15

20

− k = 3, solve LP in Ω,

x̃kLP = argminΩk−1
cTx.

− Do line search, generate supporting hyperplane and add to Ω.

− Terminate LP1-step since F(x̃kLP) < ϵLP1.

22



LP1-STEP − ITERATION 3

− Ω2 = {x|lj(x) ≤ 0, j ∈ {1, 2}, x ∈ X}

l1(x) = 3.26x1 + 0.313x2 − 33.9

l2(x) = 0.332x1 + 1.30x2 − 19.2

5 10 15 20

5

10

15

20

− k = 3, solve LP in Ω,

x̃kLP = argminΩk−1
cTx.

− Do line search, generate supporting hyperplane and add to Ω.

− Terminate LP1-step since F(x̃kLP) < ϵLP1.

22



LP1-STEP − ITERATION 3

− Ω2 = {x|lj(x) ≤ 0, j ∈ {1, 2}, x ∈ X}

l1(x) = 3.26x1 + 0.313x2 − 33.9

l2(x) = 0.332x1 + 1.30x2 − 19.2

5 10 15 20

5

10

15

20

− k = 3, solve LP in Ω,

x̃kLP = argminΩk−1
cTx.

− Do line search, generate supporting hyperplane and add to Ω.

− Terminate LP1-step since F(x̃kLP) < ϵLP1.

22



LP2-STEP − ITERATION 4

− Ω3 = {x|lj(x) ≤ 0, j ∈ {1, 2, 3}, x ∈
X}

l1(x) = 3.26x1 + 0.313x2 − 33.9

l2(x) = 0.332x1 + 1.30x2 − 19.2

l3(x) = 1.66x1 + 0.951x2 − 26.2 5 10 15 20
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− k = 4, solve LP now in Ω ∩ L,

x̃kLP = argminΩk−1∩L c
Tx.

− Do line search, generate supporting hyperplane and add to Ω.

− Terminate LP2-step since F(x̃kLP) < ϵLP2.
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MILP STEP − ITERATIONS 5 AND 6
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MILP k = 5
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MILP k = 6

− In this step the integer requirements in Y are also
considered, i.e., initially k = 5, Ω = Ωk−1 ∩ L ∩ Y.

− The MILP steps are required to guarantee an integer-feasible
solution.
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SOLUTION AND COMPARISONS TO OTHER SOLVERS

− Solving the MINLP problem with the supporting hyperplane
algorithm gives the following solution

Type Iteration Obj. funct. x1 x2 F(x1, x2)
LP1 1 −40.0000 20.0000 20.0000 30 359
LP1 2 −28.4720 8.47199 20.0000 14.9321
LP1 3 −21.6378 9.19722 12.4406 0.957382
LP2 4 −21.1639 8.56022 12.6037 0.229455
MILP 5 −20.9065 8.90647 12 0.00442134
MILP 6 −20.9036 8.90362 12 4.22619 · 10−6

− Solution times compared to some other MINLP solvers:

Solver Subproblems solved Time (s) Implementation
ESH 4 LP + 2 MILP (2 OPT) 0.04 COIN-OR (IPOPT + CPLEX)
ECP (convex) 22 MILP (9 OPT) + 12 NLP 1.51 GAMS 24.2 (CONOPT + CPLEX)
DICOPT 11 NLP + 10 MILP 1.00 GAMS 24.2 (CONOPT + CPLEX)
SBB 4 NLP 0.41 GAMS 24.2 (CONOPT)
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NUMERICAL COMPARISONS



SOME PRELIMINARY TESTS

A prototype ESH solver utilizing COIN-OR projects, IPOpt as NLP
solver and CPLEX 12.6 as MILP solver was applied to some
convex MINLP test problems from MINLPLib2.

It was compared to some MINLP solvers available in GAMS:

− AlphaECP (convex version), ANTIGONE, BARON, DICOPT,
SBB and SCIP

The runs were terminated after 1,800 seconds.
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QUADRATIC PROBLEMS

Solver alan fac3 netmod-dol2 netmod-kar1 slay05h

ESH 0.01 0.76 94.19 21.87 38.49
ECP 0.28 0.22 467.35 82.54 84.46

ANTIGONE 0.33 92.75 113.9 157.01 0.61
BARON 0.14 1.31 ∗ # 1,067.14
DICOPT 0.14 0.53 # # 0.19
SBB 0.01 0.20 # 23.26 6.13
SCIP 0.01 0.23 43.57 4.04 1.24

Variables 8 66 1,998 456 230
Binaries 4 12 462 136 40
Integers 0 0 0 0 0
Type MBQP MBQP MBQP MBQP MBQP

Solver du-opt ex4

ESH 33.3 1.01
ECP 22.98 0.75

ANTIGONE ∗ 0.22
BARON 13.74 2.62
DICOPT # 0.44
SBB 0.33 1.06
SCIP 0.7 0.45

Variables 20 36
Binaries 0 25
Integers 13 0
Type MIQP MBQCQP

All times in seconds. Terminated problems after 1,800 s indicated with ∗. Nonoptimal solution indicated with #.
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GENERAL NONLINEAR PROBLEMS

Solver batchs101006m enpro56pb o7 rsyn0805m04h rsyn0830m04h sssd25-08

ESH 17.89 1.34 461.75 6.64 111.63 58.71
ECP 17.8 2.37 ∗ 4.46 25.02 ∗

ANTIGONE 15.68 0.75 ∗ ∗ ∗ 668.71
BARON 161.81 7.75 ∗ 66.87 ∗ ∗
DICOPT 1.75 0.34 # 2.31 4.57 ∗
SBB # # # 10.8 171.91 #
SCIP 11.68 1.48 ∗ 13.63 ∗ ∗

Variables 278 127 114 1,400 1,956 256
Binaries 129 73 42 296 416 224
Integers 0 0 0 0 0 0
Type MBNLP MBNLP MBNLP MBNLP MBNLP MBNLP

Solver fo7-ar4-1 fo9-ar3-1 jit1 m7-ar5-1

ESH 32.51 169.15 0.12 1.06
ECP 79.45 612.68 0.25 4.84

ANTIGONE 33.58 ∗ 1.36 1.61
BARON ∗ ∗ 0.1 166.62
DICOPT # # # #
SBB # # 0.03 #
SCIP 34.12 393.22 0.01 13.15

Variables 112 180 25 112
Binaries 0 0 0 0
Integers 42 72 4 42
Type MINLP MINLP MINLP MINLP

All times in seconds. Terminated problems after 1,800 s indicated with ∗. Nonoptimal solution indicated with #.
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CONCLUSIONS



FUTURE WORK

A journal paper will soon be submitted.

Planned implementations of the algorithm

− COIN-OR

− Mathematica / Wolfram Language

− GAMS

Algorithmic development

− selection (update) strategies of the interior point

− strategies for the LP1/LP2 steps

− MILP solution strategies

Extensive comparisons to other solvers.

We are looking for additional reference test problems!
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Thank you for your attention!

Any questions?
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