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A few words about Abo Akademi University

The University (AAU) was originally founded in 1640.
After a big fire in the town, 1828, AA moved to Helsinki (as Helsinki University)

AAU was re-established in Turku (Abo ) in 1918.

- Abo Akademi
Finland University
@ population: 5.3 million
@ area: 131.000 sq mi e 7000 students
e official languages: e multidisciplinary
o Finnish 92% @ education in Swedish

e Swedish 6%




1700: Anders Lexell (1740-1784) (mathematics, astronomy) (Successor of Leonhard Euler in St:Petersburg)
1800: Johan Gadolin (1760-1852) (chemistry) (Element 64 Gd named after him)
‘ N 1900: Lars Ahlfors (1907-1996) (mathematics) (Fields medal in 1936)
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Convex functions

Problem (P1)

minimize  f(x)

subjectto g(x) <0,

where f and g are convex
functions.

2189
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Convex functions

Problem (P1) Problem (P2)
minimize  f(x) minimize  f(x)
subjectto g(x) <0, subjectto x€C,

where f and g are convex where f is a convex function,
functions. C ={x|g(x) <0}, and g are

convex/quasiconvex functions.

§
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Smooth or nonsmooth functions
Does the convergence properties of a considered

“convex MINLP” solver still hold true if the functions
are not differentiable but convex/quasiconvex?

convex quasiconvex

smooth twice differentiable (C?) ? ?
smooth once differentiable (C1) ? ?
nonsmooth continuous ? ?

? ?

locally Lipschitz continuous
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Nonsmooth functions in MINLP

Is it possible to only replace gradients with
subgradients in order to handle nonsmooth functions

rigourously in algorithms for differentiable convex problems?
Not for all convex MINLP algorithms!
Yes, e.g., for ECP

No, for certain versions of OA, e.g., the linear OAl:

Algorithm 1 (Linear Outer Approximation).
Initialization: y° is given; seti=0,T ~'=@,S~' =@ and UBD = e,
REPEAT

(1) Solve the subproblem NLP(y'), or the feasibility problem F(y') if NLP(y’) is
infeasible, and let the solution be x'.

(2) Linearize the objective and (active) constraint functions about (x', y). Set
Ti=T'""U{i} or '=5"""U (i} as appropriate.
(3) IF (NLP(y') is feasible and f | < UBD) THEN
update current best point by setting x* =x', y*=y/, UBD=f .
(4) Solve the current relaxation M’ of the master program M, giving a new integer

assignment y'* ! to be tested in the algorithm. Seti=i+1.
UNTIL(M' is infeasible).

S\
N\
B
1 Fletcher, R. and Leyffer, S., Solving mixed integer nonlinear programs by outer approximation, Mathematigal
Programming 66, pp. 327-349, 1994.

& @‘ﬁ
G A/A



2. Aspects on algorithms for convex MINLP problems 25|89

A convex nonsmooth example where the gradient is

replaced by a subgradient2

minimize 2x-y
subjectto g(x,y)<0 ()
y—-4x-1<0
0<x<2 yeY={01,2345}

where

3 7
g(xy)= max{—z—x+y, -3 +y+x}.

‘

c:

2Eronen V.-P.,, Mékeld, M. M. and Westerlund, T., On the generalization of ECP and OA methods to nons S
W, @

convex MINLP problems, Optimization, pp. 1-17, iFirst, available online, 2012.
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Solving with the linear outer approximation

= N WD

0.5 1 1.5

y0=3
Solve the subproblem NLP(y?) or the feasibility
problem F(y°) if NLP(y?) is infeasible, and let the solution be

. G /ﬁ%ﬁ
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There are no feasible points in the problem NLP(yO), thus
the feasibility problem Fo will be solved:

minimize u

3 1
subject to max{— - X, —— —|—x} <y

2 2 (@@
2-4x<0
0<x<2

The solution of Fyo is x% = 1 with u=1/2.
Linearize g at the point (x%,y°) = (1, 3) for the next
relaxed MILP master problem MO.
Both the functions —-3/2 - x+y and —=7/2 + y + x have the

same value 1/2 at the point (x°,y?) and thus the
subdifferential is

9g(1,3) ={(a,1) e e [-1,1]}.
L EY,, o8|\ o
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= N W N
°

0.5 1 1.5

Since we may select an abitrary subgradient we may
choose, e.g., £(x%,y°) = (1,1)". Thus the new linear
constraint is

1 7
E+(1,1)(x—1,y—3)Tso = x+y-5<0 %%

/ gt
\\\(ﬂgég“)}&S
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= NN WD

0.5 1 1.5

minimize 2x-y

subjectto x+y-7/2<0
y—4x-1<0
0<x<2, yeY.

(M)

The solution point of (M%) is (1/2,3). Seti=i+1,y! = 3.
Until M’ is infeasible.

W
G A/A@ s
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0.5 1 1.5

Hence y! = y% and Fy1 = Fyo. Thus LOA may generate an
infinite loop between points (1,3) and (1/2, 3).

Both of them are infeasible but the problem (E) has a

feasible point (0, 1) for example, where the objective §
U
b

function 2x — y has the value —1. VR
) v@
RISNA/N @ s
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A new interior point based algorithm for solving convex
MINLP problems to global optimality is introduced.

Roots:

> Kelley’s cutting plane algorithm 19607
> The extended cutting plane (ECP) algorithm 19954

Cutting planes are replaced with supporting hyperplanes
using a line search procedure.

An interior point is required for the line search.

3|(elley, Jr., J., The cutting-plane method for solving convex programs, Journal of the SIAM, vol. 8(4), pp.
703-712,1960.

4Westerlu nd, T. and Pettersson, F., An extended cutting plane method for solving convex MINLP proble ﬁ
Computers & Chemical Engmeermg 19, pp. 131-136, 1995. HQ\%
|1
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An example

minimize cTx= —X1 — X2

subjectto 1/x7 +1/x2- x?‘5xg‘5 +4<0
0.15(x; —8)% +0.1(x2 —6)° +0.025e*1x5> -5 < 0
2x1—3x2-2<0
1<x1<20, 1<x><20, x1€R, x> €Z




THE MINLP PROBLEM SCOPE

The ESH algorithm solves convex MINLP problems of the type

find x* € argmin c’x (P)
xeCNLNY

where x = [x1, x2, ..., xn] " belongs to the
compact set

X={x|x<x,<Xx,i=1,...,N}CR", N

the feasible region is definedby CNLNY

C = {X|gn(x)<0, m=1,...,M, xeX}
L {x|Ax<a, Bx=>b, xe X}
Y = {X|x€Z,ic€ly xeX}

and C is a convex set.



THE MINLP PROBLEM SCOPE

The ESH algorithm solves convex MINLP problems of the type

find x* € argmin c’x (P)
xeCNLNY

where x = [x1, x2, ..., xy]" belongs to the
compact set

X={x|x<x,<Xx,i=1,...,N}CR",

the feasible region is definedby CNLNY

C = {x|lgn(x)<0, m=1,...,M xeX} i |
L {x|Ax<a, Bx=>b, xe X} i X |
Y = {X|x€Z, iely xeX}

and C is a convex set.




THE MINLP PROBLEM SCOPE

The ESH algorithm solves convex MINLP problems of the type

find x* € argmin c’x (P)
xeCNLNY

where x = [x1, x2, ..., xn] " belongs to the
compact set I f

X={x|x<x<X,i=1,...,N} CR" |

the feasible region is definedby CNLNY

C = {x|lgn(x)<0, m=1,...,M xeX} B |
L = {x|Ax<a,Bx=b, xeX} | |
Y = {X|x€Z,ic€ly xeX}

and C is a convex set.



THE MINLP PROBLEM SCOPE

The ESH algorithm solves convex MINLP problems of the type

find x* € argmin c’x (P)
xeCNLNY

where x = [x1, x2, ..., xy]" belongs to the
compact set

X={x|x<x,<Xx,i=1,...,N}CR",

the feasible region is definedby CNLNY

C = {x|lgn(x)<0,m=1,...,M, xe€ X} B |
L = {x|Ax<a,Bx=b, xeX} i Y k
Y = {X|x€Z,ic€ly xeX} Q |

and C is a convex set. —




THE MINLP PROBLEM SCOPE

The ESH algorithm solves convex MINLP problems of the type

find x* € argmin c’x (P)
xeCNLNY

where x = [x1, x2, ..., xn] " belongs to the
compact set

X={x|x<x,<Xx,i=1,...,N}CR",

the feasible region is defined by CNL NY

C = {X|gn(x)<0, m=1,...,M, xeX}
L = {x|Ax<a, Bx=b, xe X} i
Y = {X|x€Z, i€l xeX} O

and C is a convex set. —




THE MINLP PROBLEM SCOPE

The ESH algorithm solves convex MINLP problems of the type

(P)

find x* € argminc’x

xeCnLny

where x = [x1, x2, ..., xn] " belongs to the

compact set

X={x|x<x,<Xx,i=1,...,N}CR",

the feasible region is defined by CNL NY

C = {xlgn() <0, m=1,..,M xeX} i |
L = {x|Ax<a, Bx=b, xe X} 7:Cr‘|Lr‘|Y7
Y = {X|x€Z, i€l xeX} 7_: |

and C is a convex set.



BREAKDOWN OF THE ESH ALGORITHM

Interior point search step

Obtain a feasible, relaxed interior point (satisfying C) by solving a NLP problem.

Solve simple LP problems (initially in X N L) to obtain an initial overestimating
linear set.

Solve MILP problems to find the optimal solution to (P).



BREAKDOWN OF THE ESH ALGORITHM

Obtain a feasible, relaxed interior point (satisfying C) by solving a NLP problem.

LP step (optional)

Solve simple LP problems (initially in X N L) to obtain an initial overestimating
linear set.

Solve MILP problems to find the optimal solution to (P).



BREAKDOWN OF THE ESH ALGORITHM

Obtain a feasible, relaxed interior point (satisfying C) by solving a NLP problem.

Solve simple LP problems (initially in X N L) to obtain an initial overestimating
linear set.

MILP step

Solve MILP problems to find the optimal solution to (P).



INTERIOR POINT SEARCH

X2

X1

If aninterior point is not given, obtain a feasible, relaxed interior
point (satisfying all the nonlinear constraints in C) by solving a
NLP problem.



LP STEP (OPTIONAL)

X2

X1

Solve simple LP problems and conduct a line search procedure to
obtain supporting hyperplanes giving a first linear relaxation of
the convex set C.
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MILP STEP

X2

X1

Finally include the integer requirements and solve MILP problems
using a corresponding procedure to find the optimal solution to
(P).
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QUADRATIC AND NONLINEAR OBJECTIVE FUNCTIONS

Normally, a nonlinear objective function f(x) is rewritten as a
constraint
f(x) —n<0

and the new objective is to minimize the auxiliary variable p.
Many MILP solvers can directly solve MIQP problems:
» Then f(x) = x"Qx + c'x, where Q positive semidefinite.
» Gives the exact objective instead of a linearization.
Quadratic constraints can also be handled by some solvers.

» Numerical issues may lead to trouble with proving
semidefiniteness.

» Not always more effective than using the ESH algorithm for
these constraints.

19



IMPACT OF USING THE QUADRATIC OBJECTIVE STRATEGY
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A performance profile of the number of problem instances solved by
SHOT to an objective duality gap < 1% with a MIQP or MILP subsolver.
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SOLUTION LIMIT STRATEGY

It Is possible to set the number of feasible solutions to find before
terminating the MILP/MIQP subsolver.

Can be used to speed up the initial MILP iterations:

» Optimal solution of intermediate subproblems not required.

» Reduces solution time significantly in many cases.

» If no constraints are added to the subproblem, the solution limit

can be increased without rebuilding the branching tree.

Solution limit strategy*

1.
2. Solve MILP/MIQP subproblem and obtain solution x.
3.
4
5

Initially set SOLLIM = 1.

Terminate if x is MILP optimal and ESH termination criterion fulfilled.

. Increase SOLLIM and goto step 2 if x is MILP optimal and maxm gm(x) < eg.
. Add supporting hyperplanes and goto step 2.

* Westerlund T. and P6rn R. (2002). Solving Pseudo-Convex Mixed Integer Optimization Problems by Cutting Plane Techniques.
Optimization and Engineering, 3, 253-280.



SOLUTION LIMIT STRATEGY IMPACT
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Performance profiles of the number of problem instances solved by
SHOT to an objective duality gap < 1% with or without an increasing
solution limit strategy.
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BENCHMARKS AGAINST OTHER SOLVERS

The following MINLP solvers available in GAMS 24.4.1 were used:

~

> AlphaECP (with convex strategy)

> ANTIGONE

» BARON

» BONMINH (with recommended convex strategy, B-Hyb)
» DICOPT

» SBB

» SCIP (with convex strategy)

A

CPLEX and CONOPT were used as subsolvers and the time limit
per problem was 900 s.

The same problem set as before was used, i.e., all 333 convex
MINLP problems in MINLPLib 2.

The total computational time for all solvers was about 150 h.
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PERFORMANCE PROFILE
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A performance profile of the number of problem instances solved to an
objective duality gap < 1%.
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REASONS FOR TERMINATION

I B Normal completion I l Exceeded limit |:| [l Error ar capability problem

370
300 |- 290 282 -
@
(i ]
£
&
E 200 163 N
S
s 104
D — —
5 0 65 86
£ 41 D o1
= 13
2 i
AN | B o B=0 |
|
AlphaECP ANTIuONE BARON BDNMINH DICDPT BB SCIP SHOT

The termination statuses for the solvers as provided by PAVER 2. Note
that a the solution can be optimal even though a limit (e.g., time) has
been reached, the solver has simply not proven optimality.



4. Aspects on frameworks for nonconvex
MINLP problems
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Convex relaxation: branching vs reformulation

=] =505
M e ] e e

Branching: n convex subproblems (the subproblems with
the green domains are solved using a branching strategy)

[ ]
NN [ 1]
=
H

Reformulation: the entire nonconvex MINLP problem is
reformulated to a convex relaxed MINLP problem solved

sequentially. 8 ;ﬁg
) |
RISNA/N %ﬁ’
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Convex envelopes of functions or sets

for tight convex relaxations

Does a convex envelope c(x) = conv g(x) of a nonconvex
function g in an inequality constraint g(x) < 0 give the
tightest convex relaxation of g(x) < 0 when replacing it
with c(x) <0?
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Convex relaxations and envelopes in literature

Tuy 1998

“A nonconvex inequality constraint g(x) < 0, x € X, where X is
a convex set in R", can often be handled by replacing it with a
convex inequality constraint c(x) < 0 where c(x) is a convex
minorant of g(x) on X. The latter inequality is then called a
convex relaxation of the former.

G A/A%ﬁ’
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Let’s see...

Could it be possible to find some function g, other than
c(x) = conv g(x), with the property:

NcC,cC,
where

N = {xlg(x) < 0}
C, = Ixla(x) <0}
C. = {x|c(x) <0}

for all x € X such that Cq would still be a convex set?

S\
\\

QB p) @%f‘
|\ \\@% @ o
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The convex envelope of a function
Consider the function
g(x) = 0.00506x% +0.09553x> — 1.2774x% + 2.8821x + 1.5.

The convex envelope of the nonconvex function g(x) on the interval
[0,7] is given by

-0.488764x+ 1.5 if0<x<4.8312,
conv g(x) = )
g(x) if 48312 <x<7.
4
2
X — g(x)
0 i — conv g(x
1{ 5 o~ g(x) G
-2

QB p) @%f‘
|\ \\@% @ o
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The aBB underestimator, Floudas (2000)

Convex underestimator for twice-differentiable
functions

A function g(x) € C? has the convex underestimator

80 =g0)+)_alx;—x)(%—x)

for x; € [x;,X;] Vi if and only if the parameter « fulfills

a> max{O,—% min )\,-}
1

where the A;’s are the eigenvalues of the Hessian of g(x) on
the interval [x;, X;]. '
Different methods for calculating the a-values are available, ) \“%

e.g., the scaled Gerschgorin method. RN
L NONY 72, 5o\ s
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The aBB underestimatoy, illustration

For example for the function
g(x) = 0.00506x% 4+ 0.09553x3 - 1.2774x° + 2.8821x + 1.5,
where 0 < x <7, the aBB underestimator becomes

&(x)=g(x)+1.2774(0 — x)(7 — x).

2 4 6
— &)
> —— conv g(x)
&(x)
10 |

~15 + fp %
G A/A@ P
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Convex envelope of the level set

Observe that the convex envelope of a function g(x) is the
tightest convex relaxation of the function in question, but does
not generally give the tightest convex relaxation of a level set
L ={x|g(x) < a} (in this case a = 0).

S o—=

The tightest convex relaxation of L is conv L, i.e., the convex
hull of L.

The convex envelope of the set L is given by the border of its QE f
convex hull. gg& ‘ﬁ\
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Convex relaxations of the level set L = {x|g(x) < 0}

2 4~—"6 — ()

The level sets L = {x|g(x) < a} are:

a O_[46]

QB p) @%f‘
|\ \\@% @ o
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Convex relaxations of the level set L = {x|g(x) < 0}

— conv g(x)

The level sets L = {x|g(x) < a} are:

L ,=1[46] L2 % =[3.0696]

%

\ \\@%ﬁ@g >

Do
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Convex relaxations of the level set L = {x|g(x) < 0}

— g(x)
—— conv g(x)

&(x)

The level sets L = {x|g(x) < a} are:

LS 0_[4 6] L0 % =[3.0696]
LS ,=[0.248,6.713]

e

,/rﬂ
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Convex relaxations of the level set L = {x|g(x) < 0}

— &)

—— conv g(x)
&(x)

- ()

The level sets L = {x|g(x) < a} are:
L ,=1[46] L2 & =[3.0696]
18 =[0.248,6.713] LS, =[4,6]

a=

A possible tight convex relaxation: c1(x) = 3(x —4)(x - 6). %@ ‘ f
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Convex relaxations of the level set L = {x|g(x) < 0}

—— conv g(x)
&(x)

- al)
ca(x)

The level sets L = {x|g(x) < a} are:
L8 ,=[46] L2 20%=[3.0696]
Ly O_[02486713] Lilo=L20=1[46]

Another tight convex relaxation: \S

co(x) = max{—%(x—4), %(x—6)}. iz éB ,,
\\\@%@ o
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A nonconvex size constraint in two dimensions

» Consider the inequality constraint
g(x) <0,
where

g(x)=50-x1-x5, 0.5<x3, x> <10.

» The contour plot of the constraint function g is

%
&

Ty
\ \\@@&
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McCormick convex relaxation

The convex envelope of the negative bilinear term —x; x5 is
max{—X1xz = XpX1 +X1X5, —X1X2 —X2x1 + X1 X2}
where the bounds of the variables are x; < x; <X;.

If 0.5 < x1, x> <10, we then obtain

conv g(x) =50-max{-10-x; —0.5-x>+5,
-0.5-x;-10-x>+ 5}

&

\ \\@%A R
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The level sets for the McCormick relaxation

conv g

. g i .
Left: The level set L_. Right: The levelset L,

» Observe that, although L?_, is a convex set, replacing g(x) <0
with conv g(x) < 0 does not give the tightest convex relaxation
of L% .

a=0
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A convex reformulation

By reformulating
g(x) =50~ x; - x;

at g(x) = 0 we can, in this case, obtain the following convex
constraints exactly defining the border of the level set Lf:():

50 50
C]_(X) = g—Xl and C2(X) = Z—Xz.

Since c;(x) and c(x) exactly define the border of L2 _, it
follows that

C1 —_ — 18
Ly-o=Lio=L, ¢
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The level sets for the convex reformulation

N~ O

N A OO
T

[ R [

[
2 4 6 8 10 2 4 6 8 10

conv g

Upper left: The level set L 0 Upper right: The level set L  —

Lower left: The level set L —o- Lower right: The level set La O ‘@
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3D illustration of the relaxations

Illustration of g(x)
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3D illustration of the relaxations

Illustration of g(x) and c1(x)
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4. Aspects on frameworks for nonconvex MINLP problems

3D illustration of the relaxations
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5. A reformulation algorithm for solving C?
MINLP problems
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Introduction

A framework for reformulating nonconvex
(twice-differentiable — C2) mixed integer nonlinear
programming (MINLP) problems to convex form is
presented.

> The framework is an extension to a previously introduced
reformulation technique for signomial problems.

> For CZ—constraints, convex reformulations are made in an
extended variable-space using variants of the aBB
quadratic convex underestimator.

> With the framework, a nonconvex problem can be
reformulated to a larger convex MINLP problem solved in
one step or to a sequence of smaller relaxed MINLP

problems solved iteratively. %
N\

W

5 .\s
G A/A@ P
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The considered problem-type

Nonconvex problem f(x) is a convex function

q(x) are convex functions

min.  f(x) h(x) are nonconvex
s.t.  g(x)+h(x)<0 twice-differentiable (C2) functions
X<x<X the variables in x are reals, binaries

or integers

Nonconvex twice-differentiable functions (incl. signomials) can
be convexified using an a’BB—type reformulation.

h(x) = h +Z <0, x= (XL, X2, XN)

where the HeSS|an of ﬁ\(x) will be:

H= H + 2 diag («&;) 8 \&%‘Iﬁ
and the «;. values obtained i.e. by Gerschgorin’s circle theorem | \ENGN, @ R
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Gerschgorin’s circle theorem

Theorem

Let A € C™" with entries a; and define R; = }_

j=ilajl Every
eigenvalue of A lies within at least one of the Gerschgorin disks

D(aj, Ri) = {x: Ix—a;| < R;}.
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Gerschgorin’s circle theorem

Theorem

Let A € C™" with entries a; and define R; = }_;.;|a;|. Every
eigenvalue of A lies within at least one of the Gerschgorin disks

D(aj, Ri) = {x: Ix—a;| < R;}.

Example Im
3
2+i 2 -1
A=
1 -1 -1 1 Re
+ t e
-3 -1 1 3 5 7
-1
K
-3 P



5. A reformulation algorithm for solving C2 MINLP problems —— 68| 89

Gerschgorin’s circle theorem

Theorem

Let A € C™" with entries a; and define R; = }_;.;|a;|. Every
eigenvalue of A lies within at least one of the Gerschgorin disks

D(aj, Ri) = {x: Ix—a;| < R;}.

Example Im
3
24i 2 -1
A=
1 -1 -1 i Re
* — t — >
-3 -1 1 3 5 7
-1
&
-3 IS



5. A reformulation algorithm for solving C2 MINLP problems —— 68| 89

Gerschgorin’s circle theorem

Theorem
Let A € C™" with entries a; and define R; = }_;.;|a;|. Every
eigenvalue of A lies within at least one of the Gerschgorin disks

D(aj, Ri) = {x: Ix—a;| < R;}.

Example Im

3

2+i 2 -1
A=
1 -1 -1 . Re
o f —<—p
-8 -1 1 3 5 /4

-1
-3 B
\\\(@%A@
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Extending Gerschgorin’s circle theorem to interval matrices

The circle theorem can be extended to interval matrices by
considering the worst case.

Positive-semidefiniteness is wanted, therefore “worst case”
should be interpreted as lowest eigenvalue.

Example 44 1m

25 13 0 24
H=

0 [-1,0] [-2,-1]
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Diagonal aBB using the Gerschgorin Method

The function is underestimated by adding the perturbation
N
Q(x) = h(x)+ Z(a,-x,-z — W,) <0, x=(x9,%X5,...,XyN)
i=1

To guarantee positive-semidefiniteness we set the constraints
h”_R,' —|_ 2&,‘ 2 0, l — 1,2,...,”.

4!|IT]
25 [1,3] O
[ [-1,3] [5,6] [-1,0]
0 [1,0] [-2-1] 24
0 — _— R
A7 ] 5 T
0
2,5] [-1,3] 0 } —27
| 0 [ELO [2-1] 4 .,
N = @%
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Diagonal aBB using the Gerschgorin Method

The function is underestimated by adding the perturbation
N
Q(x) = h(x)+ Z(a,-x,-z — W,) <0, x=(x9,%X5,...,XyN)
i=1

To guarantee positive-semidefiniteness we set the constraints
h”_R, _’_2&! -':_} O, l — 1,2,...,“.

[-1,3] [5,6] [-1,0]

[2,5] [-1,3] 0
[ 0 [-1,0] [-2,-1]

1 - Re
+ 0 ‘ _2 B 4 s
3
3,6] [-1,3] O —27
{ 0 [-1,0]  [L4] } 4 @\ga;
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Diagonal and off-diagonal BB

The function can also be underestimated by adding

A N .
h(x) = h(x)+ Z(a;xﬁ - W,) + i Xj>i Biixixj as in Skjal et al. (2012).
i—1

To guarantee positive-semidefiniteness we can then manipulate the diagonal
and off-diagonal elements of the resulting Hessian matrix: the radius and
midpoint of each Gerschgorin circle will be altered in the constraints

hii+2a; - Y . 'hﬂ. +,3,-j' >0 Vi, hy € [hy, by

Re

——— :—b

4 Alm
[2,5] [-1,3] 0
[-1,3] [5,6] [-1, 0]
0 [-1,0] [-2,-1] 29
0 0 O -
+1 0 0 O ‘ -2
0 0 O
2N
[2,5] [-1,3] 0
0 -1,0] [-2,-1] } -4 1
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Diagonal and off-diagonal BB

The function can also be underestimated by adding

A N .
h(x) = h(x)+ Z(a;xﬁ - W,) + i Xj>i Biixixj as in Skjal et al. (2012).
i—1

To guarantee positive-semidefiniteness we can then manipulate the diagonal
and off-diagonal elements of the resulting Hessian matrix: the radius and
midpoint of each Gerschgorin circle will be altered in the constraints

hij+2a; - Y i 'hU +,6,-j' >0 Vi, hy € [hy, hy).

4 Alm
2,5] [-1,3] 0
[-1,3] [5,6] [-1,0]
[ 0 [-L0] [-2-1] 27
0 -1 O f -— A —— R—e.-
+ 0 ‘ -2 \ 2 4 6
0 1/2 5/2
-2+
2,5] [-2,2] 0
|0 212 [1/23/2] l =41 % %
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Branching vs reformulation

NN
=] =505
Ml b

Slifsi

Branching: n convex subproblems (the subproblems with
the green domains are solved using a branching strategy)

Reformulation: a sequence of convex MINLP problems are
solved (the whole domain is considered in each iteration)

(@/ﬁ%ﬁ



5. A reformulation algorithm for solving C2 MINLP problems — 73| 89

Including aBB in the reformulation framework

To be able to reformulate the problem in subdomains
without branching, a convex quadratic function ax? is
added to and a variable W subtracted from the nonconvex
c? constraint, i.e.,

h(x) <0.
|
convex
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Including aBB in the reformulation framework

To be able to reformulate the problem in subdomains
without branching, a convex quadratic function ax? is
added to and a variable W subtracted from the nonconvex
c? constraint, i.e.,

h(x) <0.
|
convex

If a is large enough, then the reformulated constraint will
be convex.

g
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Including aBB in the reformulation framework

To be able to reformulate the problem in subdomains
without branching, a convex quadratic function ax? is
added to and a variable W subtracted from the nonconvex
c? constraint, i.e.,

h(x) <0.
|
convex

If a is large enough, then the reformulated constraint will
be convex.

If ax? — w <0, then the reformulated constraint
underestimates the original one. %

g
\ \\(@%A E
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The convex reformulation in subdomains

h —I—ax2 <0

NN ANV
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The convex reformulation in subdomains

L | L | | L | | | |
|\ A My P ,"l [ —_ e | = =
V4 R e
N /
2_w \
ax-—W '\, /
”
\"" -i’

If @ in ax? is large enough then h(x) + ax? — W will be
convex.

If W is given by a PLF of ax? then h(x) is also
underestimated in each subdomain since ax? — W <0.

‘.,:

74189
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The convex reformulation in subdomains

h(x) + ax?~W <0

| L | |

L L | |
f I F [ il il -
2 A7 N
ax / \ /
7/
N ”
N,
h




5. A reformulation algorithm for solving C2 MINLP problems — 75| 89

The spline aBB underestimator

The spline aBB-underestimator is a smooth convex piecewise
polynomial expression

0(1X2+ﬁ1X—|—7/1 if x € [0)1,0)2]

arx% + Bax+ > if x € [wy, w3]
S(x) = .

ak-1x? + Br-1x+ k-1 if x € [wi_1, wil,

The ay’s ensure convexity. The B, and yy for k € {2,...,K -1}
ensure smoothness and continuity, and 1, ¥; gives
S(w1) = S(wk) =0.

— 1 1 1 —

aq w>
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Generalization to N dimensions

The formulation can easily be extended from one to N
dimensions by using the underestimators

(cr,-xi2 - W,) <0, x=(x1,x2,...,Xn), OF

(S (x;) - )<0 X =(X1,X2,.-, XN )-

when using the reformulated versions of the original aBB
and spline BB underestimators respectively.

gzzsﬁf‘
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Generalization to N dimensions

The formulation can easily be extended from one to N
dimensions by using the underestimators

(cr,-xi2 - W,) <0, x=(x1,x2,...,Xn), OF

(S (x;) - )<0 X =(X1,X2,.-, XN )-

when using the reformulated versions of the original aBB
and spline BB underestimators respectively.

Here W is the PLF of W; = ¢; x and S is the PLF of S;.
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Reformulation or implementation in a global optimization

algorithm

The underestimator can be used for reformulation or
directly implemented in a global optimization algorithm,
e.g., aGO, for solving nonconvex MINLP problems with
C?-constraints, c.f, Lundell et al. (2013).

A sequence of overestimated convex MINLP problems is
solved (see Eronen et al. (2012) for convex MINLP
methods) until the solution fulfills the constraints in the
original nonconvex problem.

The feasible region of the overestimated convexified
problem is reduced in each iteration by improving the PLFs \'

of W = a;x? or S(x).
e /ﬁ@& %
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80|89
The original nonconvex MINLP problem

minimize  f(x1,x2) = (2x1 — 4)% + (x2 — 13/2)?
subjectto  x7 cos? x> + x2 sin? x1—3/x2+x1/2-5/2<0,

| ——

q(x1)
x1 €R, xz€Z

h (XerZ)

2<x1<4, 2<x2<8,
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The original nonconvex MINLP problem

minimize  f(x1,x2) = (2x1 — 4)% + (x2 — 13/2)?

subjectto  x7 cos? x> + x2 sin? x1—3/x2+x1/2-5/2<0,
————
h(x1,x2) q(x1)

2<x1<4, 2<x2<8, x1€R, xxeZ

X2

N WA U1 OO N
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The reformulated MINLP problem

minimize f(Xl,Xz):(2X1—4)2+(X2—13/2)2

subjectto x1 cos? X2 + x2 sin? x1 —3/x2 +x1/2-5/2

2<x1<4, 2<x2<8 x1€R, xxeZ
and are sets including the variables
and breakpoints in PLF; of S;(x1)

This reformulated problem is convex in the extended
variable space consisting of the original variables x; and
x>, as well as, those needed for the PLFs in V; and V5.

%
S Ba %
N\ = i
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aGO iteration 1




5. A reformulation algorithm for solving C2 MINLP problems — 83| 89

aGO iteration 2
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aGO iteration 2
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aGO iteration 3
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aGO iteration 4

X1
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2 25 3 35 4
X1

aGO iteration 5 and 6

2
2 25 3 35 4
X1

Iter. | Regions | f(x1,x2) | x1 xp | h(x1,x2)+q(x)
1 1 0.2500 2.0 7 4.9959
2 4 0.2500 2.0 6 4.9959
3 9 0.2500 2.0 7 4.9959
4 16 3.3630 2.52749 5 0.0273
5 20 3.3767 2.53074 5 0.0139
6 24 3.3848 2.53263 5 0.0061
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Summary

Introduction — a short background to MINLP

Some aspects on convex MINLP algorithms

> Convex functions and convex sets
> Smooth and nonsmooth functions

A new algorithm for solving convex MINLP problems
Aspects on solving nonconvex MINLP problems

> Convex relaxations in BB and relaxation frameworks
> Convex envelopes of functions or level sets

A reformulation algorithm for solving C? MINLP problems W

G /ﬁ%ﬁ%
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The end of the presentation
Thank you for listening!

The presentation including relevant references will be
available at www.abo.fi/ose
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