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A few words about Åbo Akademi University
The University (ÅAU) was originally founded in 1640. 
After a big fire in the town,1828, ÅA moved to Helsinki (as Helsinki University)
ÅAU was re-established in Turku (Åbo ) in 1918. 



Some names from the history of Åbo Akademi University
1700: Anders Lexell (1740-1784) (mathematics, astronomy) (Successor of Leonhard Euler in St:Petersburg)

1800: Johan Gadolin (1760-1852) (chemistry) (Element 64 Gd named after him)
1900: Lars Ahlfors (1907-1996) (mathematics) (Fields medal in 1936)
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Convex functions or convex sets

Problem (P1)

minimize f(x)

subject to g(x) ≤ 0,

where f and g are convex
functions.

Problem (P2)

minimize f(x)

subject to x ∈ C ,

where f is a convex function,
C = {x |g(x) ≤ 0}, and g are

convex/quasiconvex functions.
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Smooth or nonsmooth functions

I Does the convergence properties of a considered
“convex MINLP” solver still hold true if the functions
are not differentiable but convex/quasiconvex?

convex quasiconvex

smooth twice differentiable (C 2) ? ?
smooth once differentiable (C 1) ? ?

nonsmooth continuous ? ?
locally Lipschitz continuous ? ?
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Nonsmooth functions in MINLP

Question: Is it possible to only replace gradients with
subgradients in order to handle nonsmooth functions
rigourously in algorithms for differentiable convex problems?

Answer: Not for all convex MINLP algorithms!

I Yes, e.g., for ECP
I No, for certain versions of OA, e.g., the linear OA1:

1Fletcher, R. and Leyffer, S., Solving mixed integer nonlinear programs by outer approximation, Mathematical
Programming 66, pp. 327–349, 1994.
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A convex nonsmooth example where the gradient is

replaced by a subgradient2

minimize 2x − y

subject to g(x ,y) ≤ 0

y −4x −1 ≤ 0

0 ≤ x ≤ 2, y ∈ Y = {0,1,2,3,4,5},

(E )

where

g(x ,y) = max
{
−3

2
− x + y , −7

2
+ y + x

}
.

2Eronen, V.-P., Mäkelä, M. M. and Westerlund, T., On the generalization of ECP and OA methods to nonsmooth
convex MINLP problems, Optimization, pp. 1–17, iFirst, available online, 2012.
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Solving with the linear outer approximation

0.5 1 1.5
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Initialization: y0 = 3

Step 1: Solve the subproblem NLP(y0) or the feasibility
problem F(y0) if NLP(y0) is infeasible, and let the solution be
x0.
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I There are no feasible points in the problem NLP(y0), thus
the feasibility problem Fy0 will be solved:

minimize Þ

subject to max
{3

2
− x , −1

2
+ x

}
≤ Þ

2−4x ≤ 0

0 ≤ x ≤ 2.

(Fy0)

I The solution of Fy0 is x0 = 1 with Þ= 1/2.

Step 2: Linearize g at the point (x0,y0) = (1,3) for the next
relaxed MILP master problem M 0.

I Both the functions −3/2− x + y and −7/2+ y + x have the
same value 1/2 at the point (x0,y0) and thus the
subdifferential is

�g(1,3) =
{
(Ó,1)T |Ó ∈ [−1,1]

}
. (1)
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I Since we may select an abitrary subgradient we may
choose, e.g., à(x0,y0) = (1,1)T . Thus the new linear
constraint is

1
2
+(1,1)(x −1,y −3)T ≤ 0 ⇒ x + y − 7

2
≤ 0.
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minimize 2x − y

subject to x + y −7/2 ≤ 0

y −4x −1 ≤ 0

0 ≤ x ≤ 2, y ∈ Y .

(M 0)

I The solution point of (M 0) is (1/2,3). Set i = i +1, y1 = 3.

Repeat steps 1–4: Until M i is infeasible.
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I Hence y1 = y0 and Fy1 ≡ Fy0 . Thus LOA may generate an
infinite loop between points (1,3) and (1/2,3).

I Both of them are infeasible but the problem (E) has a
feasible point (0,1) for example, where the objective
function 2x − y has the value −1.



3. A new algorithm for solving convex MINLP

problems







THE MINLP PROBLEM SCOPE

The ESH algorithm solves convex MINLP problems of the type

find x∗ ∈ argmin
x∈C∩L∩Y

cTx (P)

where x = [x1, x2, . . . , xN]T belongs to the
compact set

X = {x | xi ≤ xi ≤ xi, i = 1, . . . ,N} ⊂ Rn,

the feasible region is defined by C ∩ L ∩ Y

C = {x | gm(x) ≤ 0, m = 1, . . . ,M, x ∈ X}
L = {x |Ax ≤ a, Bx = b, x ∈ X}
Y = {x | xi ∈ Z, i ∈ IZ, x ∈ X}

and C is a convex set.
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BREAKDOWN OF THE ESH ALGORITHM

Interior point search step

Obtain a feasible, relaxed interior point (satisfying C) by solving a NLP problem.

LP step (optional)

Solve simple LP problems (initially in X ∩ L) to obtain an initial overestimating
linear set.

MILP step

Solve MILP problems to find the optimal solution to (P).
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INTERIOR POINT SEARCH

x1

x2

If an interior point is not given, obtain a feasible, relaxed interior
point (satisfying all the nonlinear constraints in C) by solving a

NLP problem.
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LP STEP (OPTIONAL)

x1

x2

Solve simple LP problems and conduct a line search procedure to
obtain supporting hyperplanes giving a first linear relaxation of

the convex set C.
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MILP STEP

x1

x2

Finally include the integer requirements and solve MILP problems
using a corresponding procedure to find the optimal solution to

(P).
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QUADRATIC AND NONLINEAR OBJECTIVE FUNCTIONS

Normally, a nonlinear objective function f(x) is rewritten as a
constraint

f(x)− µ ≤ 0

and the new objective is to minimize the auxiliary variable µ.

Many MILP solvers can directly solve MIQP problems:

» Then f(x) = xTQx+ cTx, where Q positive semidefinite.

» Gives the exact objective instead of a linearization.

Quadratic constraints can also be handled by some solvers.

» Numerical issues may lead to trouble with proving
semidefiniteness.

» Not always more effective than using the ESH algorithm for
these constraints.

19



IMPACT OF USING THE QUADRATIC OBJECTIVE STRATEGY

0 2 4 6 8
0

100

200

300

Solution time (s)

N
um

be
r
of

in
st
an

ce
s
so
lv
ed

10 15 30 60 120 240 480 900

Solution time (s)

SHOT with MIQP subsolver

SHOT with MILP subsolver

A performance profile of the number of problem instances solved by
SHOT to an objective duality gap≤ 1%with a MIQP or MILP subsolver.

22



* Westerlund T. and Pörn R. (2002). Solving Pseudo-Convex Mixed Integer Optimization Problems by Cutting Plane Techniques. 
Optimization and Engineering, 3, 253-280.

*



SOLUTION LIMIT STRATEGY IMPACT
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BENCHMARKS AGAINST OTHER SOLVERS

The following MINLP solvers available in GAMS 24.4.1 were used:

» AlphaECP (with convex strategy)

» ANTIGONE

» BARON

» BONMINH (with recommended convex strategy, B-Hyb)

» DICOPT

» SBB

» SCIP (with convex strategy)

CPLEX and CONOPT were used as subsolvers and the time limit
per problem was 900 s.

The same problem set as before was used, i.e., all 333 convex
MINLP problems in MINLPLib 2.

The total computational time for all solvers was about 150 h.
28



PERFORMANCE PROFILE
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Convex relaxation: branching vs reformulation

I Branching: n convex subproblems (the subproblems with
the green domains are solved using a branching strategy)

I Reformulation: the entire nonconvex MINLP problem is
reformulated to a convex relaxed MINLP problem solved
sequentially.
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Convex envelopes of functions or sets

for tight convex relaxations

I Does a convex envelope c(x) = conv g(x) of a nonconvex
function g in an inequality constraint g(x) ≤ 0 give the
tightest convex relaxation of g(x) ≤ 0 when replacing it
with c(x) ≤ 0?
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Convex relaxations and envelopes in literature

Tuy 1998

“A nonconvex inequality constraint g(x) ≤ 0, x ∈ X , where X is
a convex set in �

n , can often be handled by replacing it with a
convex inequality constraint c(x) ≤ 0 where c(x) is a convex
minorant of g(x) on X . The latter inequality is then called a
convex relaxation of the former. Of course, the tightest

relaxation is obtained when c(x) = conv g(x), the convex

envelope, i.e., the largest convex minorant, of g(x).”
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Let’s see. . .

I Could it be possible to find some function q , other than
c(x) = conv g(x), with the property:

N ⊂ Cq ⊂ Cc ,

where

N = {x |g(x) ≤ 0}
Cq = {x |q(x) ≤ 0}
Cc = {x |c(x) ≤ 0}

for all x ∈ X such that Cq would still be a convex set?
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The convex envelope of a function

Consider the function

g(x) = 0.00506x4 +0.09553x3 −1.2774x2 +2.8821x +1.5.

The convex envelope of the nonconvex function g(x) on the interval
[0,7] is given by

conv g(x) =

−0.488764x +1.5 if 0 ≤ x ≤ 4.8312,
g(x) if 4.8312 < x ≤ 7.

2 4 6
−2

0

2

4

x g(x)
conv g(x)
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The ÓBB underestimator, Floudas (2000)

Convex underestimator for twice-differentiable
functions

A function g(x) ∈ C 2 has the convex underestimator

ĝ(x) = g(x)+
¼

i

Ó(x i − xi )(x i − xi )

for xi ∈ [x i ,x i ] ∀i if and only if the parameter Ó fulfills

Ó ≥max
{

0,−1
2 min

i
Ýi

}
where the Ýi ’s are the eigenvalues of the Hessian of g(x) on
the interval [x i ,x i ].
Different methods for calculating the Ó-values are available,
e.g., the scaled Gerschgorin method.
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The ÓBB underestimator, illustration

I For example for the function

g(x) = 0.00506x4 +0.09553x3 −1.2774x2 +2.8821x +1.5,

where 0 ≤ x ≤ 7, the ÓBB underestimator becomes

ĝ(x) = g(x)+1.2774(0− x)(7− x).

2 4 6

−15

−10

−5

0
x

g(x)
conv g(x)

ĝ(x)
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Convex envelope of the level set

I Observe that the convex envelope of a function g(x) is the
tightest convex relaxation of the function in question, but does
not generally give the tightest convex relaxation of a level set
L = {x | g(x) ≤ Ó} (in this case Ó= 0).

2 4 6

−4

−2

0

2

4

g(x)

I The tightest convex relaxation of L is conv L , i.e., the convex
hull of L .

I The convex envelope of the set L is given by the border of its
convex hull.
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Convex relaxations of the level set L = {x |g(x) ≤ 0}

2 4 6

−4

−2

0

2

4

g(x)

I The level sets L g
Ó = {x |g(x) ≤ Ó} are:

L g
Ó=0 = [4,6]
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Convex relaxations of the level set L = {x |g(x) ≤ 0}
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I The level sets L g
Ó = {x |g(x) ≤ Ó} are:

L g
Ó=0 = [4,6] L conv g

Ó=0 = [3.069,6]
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Convex relaxations of the level set L = {x |g(x) ≤ 0}

2 4 6
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g(x)
conv g(x)

ĝ(x)

I The level sets L g
Ó = {x |g(x) ≤ Ó} are:

L g
Ó=0 = [4,6] L conv g

Ó=0 = [3.069,6]

L ĝ
Ó=0 = [0.248,6.713]
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Convex relaxations of the level set L = {x |g(x) ≤ 0}

2 4 6

−4

−2

0

2

4

g(x)
conv g(x)

ĝ(x)
c1(x)

I The level sets L g
Ó = {x |g(x) ≤ Ó} are:

L g
Ó=0 = [4,6] L conv g

Ó=0 = [3.069,6]

L ĝ
Ó=0 = [0.248,6.713] L c1

Ó=0 = [4,6]

I A possible tight convex relaxation: c1(x) =
5
2 (x −4)(x −6).
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Convex relaxations of the level set L = {x |g(x) ≤ 0}

2 4 6

−4

−2

0

2

4

g(x)
conv g(x)

ĝ(x)
c1(x)
c2(x)

I The level sets L g
Ó = {x |g(x) ≤ Ó} are:

L g
Ó=0 = [4,6] L conv g

Ó=0 = [3.069,6]

L ĝ
Ó=0 = [0.248,6.713] L c1

Ó=0 = L c2
Ó=0 = [4,6]

I Another tight convex relaxation:
c2(x) = max

{
−3

4 (x −4), 3
4 (x −6)

}
.
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A nonconvex size constraint in two dimensions

I Consider the inequality constraint

g(x) ≤ 0,

where
g(x) = 50− x1 · x2, 0.5 ≤ x1, x2 ≤ 10.

I The contour plot of the constraint function g is

2 4 6 8 10

2

4

6

8

10
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McCormick convex relaxation

I The convex envelope of the negative bilinear term −x1x2 is

max{−x1x2 − x2x1 + x1x2, −x1x2 − x2x1 + x1x2}

where the bounds of the variables are x i ≤ xi ≤ x i .

I If 0.5 ≤ x1, x2 ≤ 10, we then obtain

conv g(x) = 50−max{−10 · x1 −0.5 · x2 +5,

−0.5 · x1 −10 · x2 +5}
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The level sets for the McCormick relaxation

2 4 6 8 10

2

4

6

8

10

2 4 6 8 10

2

4

6

8

10

Left: The level set L g
Ó=0. Right: The level set L conv g

Ó=0 .

I Observe that, although L g
Ó=0 is a convex set, replacing g(x) ≤ 0

with conv g(x) ≤ 0 does not give the tightest convex relaxation
of L g

Ó=0.



4. Aspects on frameworks for nonconvex MINLP problems 61 | 89

A convex reformulation

I By reformulating
g(x) = 50− x1 · x2

at g(x) = 0 we can, in this case, obtain the following convex
constraints exactly defining the border of the level set L g

Ó=0:

c1(x) =
50
x2
− x1 and c2(x) =

50
x1
− x2.

I Since c1(x) and c2(x) exactly define the border of L g
Ó=0, it

follows that
L c1
Ó=0 ≡ L c2

Ó=0 ≡ L g
Ó=0.



4. Aspects on frameworks for nonconvex MINLP problems 62 | 89

The level sets for the convex reformulation
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Upper left: The level set L g
Ó=0. Upper right: The level set L conv g

Ó=0 .

Lower left: The level set L c1
Ó=0. Lower right: The level set L c2

Ó=0.
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3D illustration of the relaxations

Illustration of g(x)
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3D illustration of the relaxations

Illustration of g(x) and c1(x)



4. Aspects on frameworks for nonconvex MINLP problems 63 | 89

3D illustration of the relaxations

Illustration of g(x), c1(x) and c2(x)
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Introduction

I A framework for reformulating nonconvex
(twice-differentiable – C 2) mixed integer nonlinear
programming (MINLP) problems to convex form is
presented.

. The framework is an extension to a previously introduced
reformulation technique for signomial problems.

. For C 2-constraints, convex reformulations are made in an
extended variable-space using variants of the ÓBB
quadratic convex underestimator.

. With the framework, a nonconvex problem can be
reformulated to a larger convex MINLP problem solved in
one step or to a sequence of smaller relaxed MINLP
problems solved iteratively.



ĥ(x) =

where the Hessian of h(x) will be:

H =  H  + 2 diag ( )^

^

and the      values obtained i.e. by
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Gerschgorin’s circle theorem

Theorem

Let A ∈�n×n with entries aij and define Ri =
´

j,i |aij |. Every
eigenvalue of A lies within at least one of the Gerschgorin disks

D(aii ,Ri ) = {x : |x −aii | ≤ Ri }.
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Extending Gerschgorin’s circle theorem to interval matrices

I The circle theorem can be extended to interval matrices by
considering the worst case.

I Positive-semidefiniteness is wanted, therefore “worst case”
should be interpreted as lowest eigenvalue.

Example

H =

 [2,5] [−1,3] 0
[−1,3] [5,6] [−1,0]

0 [−1,0] [−2,−1]


−2 2 4 6

−4

−2

2

4 Im

Re



ĥ(x) =



h(x) =^
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Branching vs reformulation

I Branching: n convex subproblems (the subproblems with
the green domains are solved using a branching strategy)

I Reformulation: a sequence of convex MINLP problems are
solved (the whole domain is considered in each iteration)
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Including ÓBB in the reformulation framework

I To be able to reformulate the problem in subdomains
without branching, a convex quadratic function Óx2 is
added to and a variable Ŵ subtracted from the nonconvex
C 2 constraint, i.e.,

h(x) + Óx2 − Ŵ︸              ︷︷              ︸
convex

≤ 0.

I If Ó is large enough, then the reformulated constraint will
be convex.

I If Óx2 − Ŵ ≤ 0, then the reformulated constraint
underestimates the original one.
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The spline ÓBB underestimator

I The spline ÓBB-underestimator is a smooth convex piecewise
polynomial expression

S(x) =


Ó1x2 + Ô1x +Õ1 if x ∈ [é1,é2]

Ó2x2 + Ô2x +Õ2 if x ∈ [é2,é3]
...

...

ÓK−1x2 + ÔK−1x +ÕK−1 if x ∈ [éK−1,éK ],

I The Ók ’s ensure convexity. The Ôk and Õk for k ∈ {2, . . . ,K −1}
ensure smoothness and continuity, and Ô1, Õ1 gives
S(é1) = S(éK ) = 0.

é2 é3 é4 é5
Ó1

Ó2
Ó3

Ó4

Ó= max{Ó1, . . . ,Ó4}

L(x)
S(x)
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Generalization to N dimensions

I The formulation can easily be extended from one to N
dimensions by using the underestimators

h(x)+
N¼

i=1

(
Ói x

2
i − Ŵi

)
≤ 0, x= (x1,x2, . . . ,xN ), or

h(x)+
N¼

i=1

(
Si (xi )− Ŝi

)
≤ 0, x= (x1,x2, . . . ,xN ).

when using the reformulated versions of the original ÓBB
and spline ÓBB underestimators respectively.

I Here Ŵi is the PLF of Wi = Ói x
2
i and Ŝi is the PLF of Si .
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Generalization to N dimensions

I The formulation can easily be extended from one to N
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2
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Reformulation or implementation in a global optimization

algorithm

I The underestimator can be used for reformulation or
directly implemented in a global optimization algorithm,
e.g., ÓGO, for solving nonconvex MINLP problems with
C 2-constraints, c.f., Lundell et al. (2013).

I A sequence of overestimated convex MINLP problems is
solved (see Eronen et al. (2012) for convex MINLP
methods) until the solution fulfills the constraints in the
original nonconvex problem.

I The feasible region of the overestimated convexified
problem is reduced in each iteration by improving the PLFs
of W = Ói x

2
i or S(x).
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The original nonconvex MINLP problem

minimize f(x1,x2) = (2x1 −4)2 +(x2 −13/2)2

subject to x1 cos2 x2 + x2 sin2 x1 −3/x2︸                                ︷︷                                ︸
h(x1,x2)

+x1/2−5/2︸      ︷︷      ︸
q(x1)

≤ 0,

2 ≤ x1 ≤ 4, 2 ≤ x2 ≤ 8, x1 ∈�, x2 ∈�.
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The reformulated MINLP problem

minimize f(x1,x2) = (2x1 −4)2 +(x2 −13/2)2

subject to x1 cos2 x2 + x2 sin2 x1 −3/x2 + x1/2−5/2

+S1(x1)+S2(x2)− Ŝ1 − Ŝ2 ≤ 0,

Ŝ1 = PLF(S1(x2),V1; Ò1), Ŝ2 = PLF(S2(x2),V2 ; Ò2),

2 ≤ x1 ≤ 4, 2 ≤ x2 ≤ 8, x1 ∈�, x2 ∈�,
Vi and Òi are sets including the variables

and breakpoints in PLFi of Si (x1)

I This reformulated problem is convex in the extended
variable space consisting of the original variables x1 and
x2, as well as, those needed for the PLFs in V1 and V2.
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ÓGO iteration 1
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5. A reformulation algorithm for solving C 2 MINLP problems 83 | 89

ÓGO iteration 2
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ÓGO iteration 2
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ÓGO iteration 3
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ÓGO iteration 4
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ÓGO iteration 5 and 6

2 2.5 3 3.5 4
2
3
4
5
6
7
8

2

5
6
7
8

x1

x2

2 2.5 3 3.5 4
2
3
4
5
6
7
8

2

5
6
7
8

x1

x2

Iter. Regions f(x1,x2) x1 x2 h(x1,x2)+q(x1)
1 1 0.2500 2.0 7 4.9959
2 4 0.2500 2.0 6 4.9959
3 9 0.2500 2.0 7 4.9959
4 16 3.3630 2.52749 5 0.0273
5 20 3.3767 2.53074 5 0.0139
6 24 3.3848 2.53263 5 0.0061
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Summary

1. Introduction – a short background to MINLP

2. Some aspects on convex MINLP algorithms
. Convex functions and convex sets
. Smooth and nonsmooth functions

3. A new algorithm for solving convex MINLP problems

4. Aspects on solving nonconvex MINLP problems
. Convex relaxations in BB and relaxation frameworks
. Convex envelopes of functions or level sets

5. A reformulation algorithm for solving C 2 MINLP problems
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The end of the presentation

Thank you for listening!

The presentation including relevant references will be
available at www.abo.fi/ose


	Aspects on Solving Convex and Nonconvex �Mixed Integer Nonlinear Programming Problems
	CMU2014.pdf
	1. Introduction – a short background to MINLP
	2. Aspects on algorithms for convex MINLP problems
	3. A new algorithm for solving convex MINLP problems
	4. Aspects on frameworks for nonconvex MINLP problems
	5. A reformulation algorithm for solving C2 MINLP problems

	4.Lundell-Kronqvist-Westerlund_SHOT_BFG.pdf
	The extended supporting hyperplane algorithm
	The Supporting Hyperplane Optimization Toolkit Solver
	Benchmarks against other MINLP solvers
	Concluding remarks

	Westerlund-Johannesburg-2016-Page1-3.pdf
	Aspects on Solving Convex and Nonconvex �Mixed Integer Nonlinear Programming Problems
	�A few words about Åbo Akademi University
	Some names from the history of Åbo Akademi University
	Slide Number 4
	Slide Number 5

	Westerlund-Johannesburg-2016-Page1-3.pdf
	Aspects on Solving Convex and Nonconvex �Mixed Integer Nonlinear Programming Problems
	�A few words about Åbo Akademi University
	Some names from the history of Åbo Akademi University
	Slide Number 4
	Slide Number 5
	Slide Number 6

	Westerlund-Johannesburg-2016-Page1-6.pdf
	Aspects on Solving Convex and Nonconvex �Mixed Integer Nonlinear Programming Problems
	�A few words about Åbo Akademi University
	Some names from the history of Åbo Akademi University
	Slide Number 4
	Slide Number 5
	Slide Number 6

	Westerlund-Johannesburg-2016-Page1-6.pdf
	Aspects on Solving Convex and Nonconvex �Mixed Integer Nonlinear Programming Problems
	�A few words about Åbo Akademi University
	Some names from the history of Åbo Akademi University
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7

	Westerlund-Johannesburg-2016-Page1-7.pdf
	Aspects on Solving Convex and Nonconvex �Mixed Integer Nonlinear Programming Problems
	�A few words about Åbo Akademi University
	Some names from the history of Åbo Akademi University
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10

	Westerlund-Johannesburg-2016-Page1-7.pdf
	Aspects on Solving Convex and Nonconvex �Mixed Integer Nonlinear Programming Problems
	�A few words about Åbo Akademi University
	Some names from the history of Åbo Akademi University
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10

	Westerlund-Johannesburg-2016-Page1-7.pdf
	Aspects on Solving Convex and Nonconvex �Mixed Integer Nonlinear Programming Problems
	�A few words about Åbo Akademi University
	Some names from the history of Åbo Akademi University
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10

	Westerlund-Johannesburg-2016-Page1-7.pdf
	Aspects on Solving Convex and Nonconvex �Mixed Integer Nonlinear Programming Problems
	�A few words about Åbo Akademi University
	Some names from the history of Åbo Akademi University
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

	Westerlund-Johannesburg-2016-Page1-7.pdf
	Aspects on Solving Convex and Nonconvex �Mixed Integer Nonlinear Programming Problems
	�A few words about Åbo Akademi University
	Some names from the history of Åbo Akademi University
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

	Westerlund-Johannesburg-2016-Page1-16.pdf
	Aspects on Solving Convex and Nonconvex �Mixed Integer Nonlinear Programming Problems
	�A few words about Åbo Akademi University
	Some names from the history of Åbo Akademi University
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16




